|Table of Contents|

Gravel scheme optimization of polyurethane paving system under entropy right-TOPSIS model in Oujiang Beikou Bridge(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2023年4期
Page:
1-11
Research Field:
道路工程
Publishing date:

Info

Title:
Gravel scheme optimization of polyurethane paving system under entropy right-TOPSIS model in Oujiang Beikou Bridge
Author(s):
QIAN Zhen-dong1 XIE Yu-xin1 NAN Hang2 WANG Han3 XUE Yong-chao1MIN Yi-tong1 TANG Wen-jie1
(1. Intelligent Transportation System Research Center, Southeast University, Nanjing 211189, Jiangsu, China; 2. Oujiangkou Bridge Co. Ltd., Wenzhou 325000, Zhejiang, China; 3. Ningbo Lubao Technology Industrial Co. Ltd., Ningbo 315800, Zhejiang, China)
Keywords:
road engineering polyurethane paving system entropy right method TOPSIS optimization method gravel particle gravel sprinkle
PACS:
U411
DOI:
10.19721/j.cnki.1671-8879.2023.04.001
Abstract:
In order to ensure that the steel deck paving of the lower bridge of the Oujiang Beikou Bridge has good service performance, relied on the paving project of the Oujiang Beikou Bridge and the orthogonal test were designed with gravel sprinkler and gravel particle size as variables. The pulling test, high-temperature rutting test and low-temperature bending were applied to test the combination specimen with multiple gravel scheme. The variation trends between the performance indexes, the amount of crushed stone spreading and the particle size of crushed stone were studied, and the model data set was established. Comprehensive entropy power method and TOPSIS optimization method, the entropy right-TOPSIS gravel optimization model was established which contained inter-layer bonding performance, high temperature stability and low temperature resistance as the indexs. The data list was imported to the model for calculation. The results show that there are different trends in the influence of crushed stone particle size and spreading amount on the three properties. When the gravel sprinkle is 6.5 kg/m2 and the gravel particle size is 2 to 3 mm, the polyurethane paving system has good adhesion performance, high-temperature stability and low-temperature crack resistance. Apply the scheme to actual engineering projects, it is proved that the paving layer formed according to this crushed stone scheme has excellent service effect, which also proves that the superiority of the gravel scheme and the actual applicability of the strong-TOPSIS gravel optimization model. It provides a theoretical basis for the application and development of polyurethane paving system and it also provides a solution for crush optimization of other paving system.13 tabs, 8 figs, 27 refs.

References:

[1] 张 倩,吕荣培,马 昭,等.聚氨酯玛蹄脂混合料的设计及性能[J].长江科学院院报,2022,39(2)147-152,158.
ZHANG Qian,LYU Rong-pei,MA Zhao,et al.Design and performance of stone matrix polyurethane[J].Journal of Yangtze River Scientific Research Institute,2022,39(2)147-152,158.
[2]王火明,李汝凯,王 秀,等.多孔隙聚氨酯碎石混合料强度及路用性能[J].中国公路学报,2014,27(10):27-35.
WANG Huo-ming,LI Ru-kai,WANG Xiu,et al.Strength and road performance for porous polyurethane mixture[J].China Journal of Highway and Transport,2014,27(10):27-35.
[3]雷建华,徐 斌,何旭辉.改性聚氨酯混凝土受压性能及本构关系研究[J].铁道科学与工程学报,2023,20(1):278-288.
LEI Jian-hua,XU Bin,HE Xu-hui.Research on compressive properties and constitutive relation of modified polyurethane concrete[J].Journal of Railway Science and Engineering,2023,20(1):278-288.
[4]YANG X L,WANG G C,RONG H L,et al.Review of fume-generation mechanism,test methods,and fume suppressants of asphalt materials[J].Journal of Cleaner Production,2022,347:131240.
[5]RHOMBERG L R,MAYFIELD D B,PRUEITT R L,et al.A bounding quantitative cancer risk assessment for occupational exposures to asphalt emissions during road paving operations[J].Critical Reviews in Toxicology,2018,48(9):713-737.
[6]薄 雾,任海生,耿 巍,等.基于生命周期分析法的钢桥面铺装层环境影响研究(英文)[J].东南大学学报(英文版),2020,36(3):334-340.
BO Wu,REN Hai-sheng,GENG wei,et al.Estigation of the environmental impacts of steel deck pavement based on life cycle assessment[J].Journal of Southeast University(English Edition),2020,36(3):334-340.
[7]应国强,邱庆生,祝春华,等.聚氨酯路面施工工艺研究[J].公路,2022,67(6):65-69.
YING Guo-qiang,QIU Qing-sheng,ZHU Chun-hua,et al.Study on construction technology of polyurethane pavement[J].Highway,2022,67(6):65-69.
[8]蔡燕霞,申爱琴,杨 光.橡胶沥青衬垫式碎石封层黏结性能[J].建筑材料学报,2013,16(4):678-682.
CAI Yan-xia,SHEN Ai-qin,YANG Guang.Bonding properties of rubber asphalt underbody chip seal[J].Journal of Building Materials,2013,16(4):678-682.
[9]江胜文.不同碎石粒径范围的防水黏结层层间性能敏感性分析[J].中外公路,2017,37(4):290-293.
JIANG Sheng-wen.Sensitivity analysis of interlayer performance of waterproof bonding layers with different gravel particle size ranges[J].Journal of China & Foreign Highway,2017,37(4):290-293.
[10]周 伟,李 娣,万建军.浇注式沥青铺装材料高温性能研究[J].公路,2020,65(8):91-94.
ZHOU Wei,LI Di,WAN Jian-jun.Study on high temperature performance of pouring asphalt pavement material[J].Highway,2020,65(8):91-94.
[11]钱振东,薛永超,孙 健.橡胶环氧沥青碎石防水黏结层抗剪性能研究[J].湖南大学学报(自然科学版),2016,43(7):82-87.
QIAN Zhen-dong,XUE Yong-chao,SUN Jian.Shear performance of waterproof cohesive layer of rubber epoxy asphalt stone[J].Journal of Hunan University(Natural Sciences),2016,43(7):82-87.
[12]马 静,戴维佳.基于AHP-信息熵决策的城市轨道建设期交通组织方案评价[J].长安大学学报(自然科学版),2020,40(4):101-108.
MA Jing,DAI Wei-jia.Evaluating on traffic management during traffic construction of urban rail based on AHP-information entropy[J].Journal of Chang'an University(Natural Science Edition),2020,40(4):101-108.
[13]李占山,杨云凯,张家晨.基于熵权法的过滤式特征选择算法[J].东北大学学报(自然科学版),2022,43(7):921-929.
LI Zhan-shan,YANG Yun-kai,ZHANG Jia-chen.Filtering feature selection algorithm based on entropy weight method[J].Journal of Northeastern University(Natural Science),2022,43(7):921-929.
[14]吴 波,陈辉浩,黄 惟.基于模糊-熵权理论的铁路瓦斯隧道施工安全风险评估[J].安全与环境学报,2021,21(6):2386-2393.
WU Bo,CHEN Hui-hao,HUANG Wei.Safety risk assessment for the railway gas tunnel construction based on the fuzzy-entropy method[J].Journal of Safety and Environment,2021,21(6):2386-2393.
[15]HE Z X.Battery electric bus selection based on entropy weight method and road operation test:Using Nanjing bus company as an example[J].Mathematical Problems in Engineering,2022,2022:1-21.
[16]王智远,李国栋,王勇华.基于AHP-TOPSIS的桥梁设计方案优选决策模型[J].吉林大学学报(工学版),2017,47(2):478-482.
WANG Zhi-yuan,LI Guo-dong,WANG Yong-hua.Optimization decision model for bridge design based on AHP-TOPSIS[J].Journal of Jilin University(Eng-ineering and Technology Edition),2017,47(2):478-482.
[17]HAN Q,LI W M,XU Q L,et al.Novel measures for linguistic hesitant Pythagorean fuzzy sets and improved TOPSIS method with application to contributions of system-of-systems[J].Expert Systems With Applications,2022,199:117088.
[18]吴 波,路 明,吴昱芳,等.基于改进TOPSIS法研究隧道施工时空效应[J].铁道工程学报,2020,37(5):42-46,64.
WU Bo,LU Ming,WU Yu-fang,et al.Research on the time and space effect of tunnel construction based on improved TOPSIS method[J].Journal of Railway Engineering Society,2020,37(5):42-46,64.
[19]艾长发,黄恒伟,RAHMAN A,等.基于熵权的TOPSIS钢桥面防水黏结材料组合体系优选分析[J].中国公路学报,2020,33(3):53-63.
AI Chang-fa,HUANG Heng-wei,RAHMAN A,et al.Optimum selection analysis of waterproof bonding materials for steel bridge deck based using entropy weight-TOPSIS[J].China Journal of Highway and Transport,2020,33(3):53-63.
[20]蒋浩鹏,孙建诚,杨文伟,等.基于AHP与改进TOPSIS权值算法的高速公路施工方案风险评价[J].武汉大学学报(工学版),2020,53(8):698-703.
JIANG Hao-peng,SUN Jian-cheng,YANG Wen-wei,et al.Risk evaluation of highway construction plan based on AHP and improved TOPSIS weight algorithm[J].Engineering Journal of Wuhan University,2020,53(8):698-703.
[21]PASETTO M,GIACOMELLO G.Experimental analysis of waterproofing polymeric pavements for concrete bridge decks[J].International Journal on Pavement Engineering & Asphalt Technology,2014,15(1):51-67.
[22]王海朋,张 蓉,张晓华,等.同步碎石集料粒径与沥青混合料配伍性研究[J].中外公路,2019,39(1):218-221.
WANG Hai-peng,ZHANG Rong,ZHANG Xiao-hua,et al.Study on compatibility of synchronous macadam aggregate particle size with asphalt mixture[J].Journal of China & Foreign Highway,2019,39(1):218-221.
[23]关永胜,韩 超,李明俊,等.水泥混凝土桥面改性环氧树脂防水黏结层性能[J].建筑材料学报,2013,16(5):894-897,902.
GUAN Yong-sheng,HAN Chao,LI Ming-jun,et al.Performance of modified epoxy resin waterproof adhesive layer on cement concrete bridge surface[J].Journal of Building Materials,2013,16(5):894-897,902.
[24]张 静,张智慧,李小冬,等.基于熵权的TOPSIS法的港口军事运输能力评估[J].清华大学学报(自然科学版),2018,58(5):494-499.
ZHANG Jing,ZHANG Zhi-hui,LI Xiao-dong,et al.Evaluation of port military transport capacity based on TOPSIS method with entropy weight[J].Journal of Tsinghua University(Science and Technology),2018,58(5):494-499.
[25]李 勤,李文龙,崔 凯.基于改进TOPSIS法的民用建筑再生利用方案决策[J].武汉大学学报(工学版),2022,55(2):160-167.
LI Qin,LI Wen-long,CUI Kai.Decision-making of civil building regeneration scheme based on improved TOPSIS method[J].Engineering Journal of Wuhan University,2022,55(2):160-167.
[26]冯学茂,覃 仲,武建民,等.高亮度铺装层对隧道中间段行车安全的影响[J].长安大学学报(自然科学版),2023,43(1):92-100.
FENG Xue-mao,QIN Zhong,WU Jian-min,et al.Influence of high brightness pavement layer on driving safety in middle section of tunnel[J].Journal of Chang'an University(Natural Science Edition),2023,43(1):92-100.
[27]王前栋,马全党,江福才.基于熵权-TOPSIS模型的内河通航水域界定方法研究[J].中国航海,2022,45(2):76-81.
WANG Qian-dong,MA Quan-dang,JIANG Fu-cai.Defining navigable waterway of inland waters with entropy weight TOPSIS model[J].Navigation of China,2022,45(2):76-81.

Memo

Memo:
-
Last Update: 2023-08-20