|Table of Contents|

Strength characteristics of cement stabilized large-sized steel slag base with different forming methods(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2023年6期
Page:
13-24
Research Field:
道路工程
Publishing date:

Info

Title:
Strength characteristics of cement stabilized large-sized steel slag base with different forming methods
Author(s):
LI Xiao-bin12 YI Jiang-tao1 CUI Can-yang3 ZHANG Lei2 XUE Hai-fang2 SHENG Yan-ping4
(1. School of Civil Engineering, Chongqing University, Chongqing 400044, China; 2. Qinghai Traffic Construction Management Co. Ltd., Xining 810000, Qinghai, China; 3. School of Civil Engineering,Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 4. School of Material Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China)
Keywords:
road engineering cement stabilized large-sized steel slag base experimental research forming method strength characteristic
PACS:
U414
DOI:
10.19721/j.cnki.1671-8879.2023.06.002
Abstract:
In order to study the applicability of large-sized steel slag in road base, the design method forgradation of large-sized asphalt mixture was adopted to mix different proportions of steel slag andmacadam. The law of the OMC and the MDD of cement stabilized large-sized steel slag base mixtures(CSLS)under different cement contents and forming methods were analyzed. And then, unconfinedcompressive strength(UCS), indirect tensile strength(ITS), compressive resilience modulus(CRM)tests ofCSLS with different forming methods and structure types were conducted. The potential laws of itsmechanical properties, curing time, cement contents, forming methods and structure types were studied.The results show that the average maximum dry density of CSLS with skeleton-dense structure andsuspended-dense structure is 1.023 times and 1.013 times of that with quasi-static-compaction, respectively.The average optimum moisture content of the mixture under quasi-static-compaction is 1.111 times and1.223 times of that under the vibration compaction method. The curing time has a positive impact onthe strength characteristics of CSLS, showing a nonlinear growth trend. The cement content increasedfrom 4.0% to 6.0%, and the 7 d UCS of CSLS increased by 25.9% on average. The 28 d ITS increased by39.6% on average, and the 90 d CRM increased by 22.4%. The forming methods have a great influenceon the road performance of CSLS. For the suspended-dense structure of CSLS, the 7 d UCS, 28 d ITS and90 d CRM of the vibration forming specimens are 109.9%, 122.8% and 54.2% higher than those of thequasi-static-compaction specimens, respectively. For the skeleton-dense structure of CSLS, the 7 d UCS,28 d ITS and 90 d CRM of the vibration forming specimens are 108.5%, 117.4% and 52.9% higher thanthose of the quasi-static-compaction specimens, respectively. The mechanical properties of thesuspended-dense structure are slightly higher than that of the skeleton-dense structure under the twoforming methods. Under vibration forming, the 7 d UCS, 28 d ITS and 90 d CRM of the suspended-densestructure are 14.8%, 10.6% and 8.6% higher than those of the skeleton-dense structure, respectively.5 tabs, 14 figs, 26 refs.

References:

[1] WANG Z J,SOHN I.A review on reclamationand reutilization of ironmaking and steelmakingslags[J].Journal of SustainableMetallurgy,2019,5(1):127-140.
[2]SEMYKINA A,SHATOKHAV,SEETHARAMAN S.Innovative approach torecovery of iron from steelmaking slags[J].Ironmaking &Steelmaking,2010,37(7):536-540.
[3]GAO X,OKUBO M,MARUOKA N,et al.Production and utilisation of iron andsteelmaking slag in Japan and the application ofsteelmaking slag for the recovery of paddy fieldsdamaged by Tsunami[J].Mineral Processing andExtractive Metallurgy,2015,124(2):116-124.
[4]中国废钢铁应用协会.废钢铁产业 “十四五”发展规划[J].资源再生,2021(8):16-21.
China Association of Metal Scrap Utilization.“14thfive-year plan” development plan for scrap ironand steel industry[J].ResourceRecycling,2021(8):16-21.
[5]南雪丽,杨蓝蓝,唐维斌,等.钢渣粒度分布对钢渣水泥水化特性影响的灰度分析[J].兰州理工大学学报,2021,47(5):138-143.
NAN Xue-li,YANG Lan-lan,TANG Wei-bin,et al.Gray correlation analysis of the influence ofparticle size distribution of steel slag onhydraulic activity of steel slag cement[J].Journalof Lanzhou University ofTechnology,2021,47(5):138-143.
[6]吴志宏,邹宗树,王承智.转炉钢渣在农业生产中的再利用[J].矿产综合利用,2005(6):25-28.
WU Zhi-hong,ZOU Zong-shu,WANGCheng-zhi.Application of converter slags inagriculture[J].Multipurpose Utilization ofMineral Resources,2005(6):25-28.
[7]李 松,张彩利,丁维哲,等.钢渣-沥青界面黏附特性研究[J].大连理工大学学报,2022,62(3):254-262.
LI Song,ZHANG Cai-li,DING Wei-zhe,et al.Research on adhesion characteristics of steelslag-asphalt interface[J].Journal of DalianUniversity of Technology,2022,62(3):254-262.
[8]冀 欣,盛燕萍,路再红,等.掺加钢渣的半刚性基层材料性能[J].长安大学学报(自然科学版),2021,41(4):21-31.
JI Xin,SHENG Yan-ping,LU Zai-hong,et al.Properties of semi-rigid base material withsteel slag[J].Journal of Chang'an University(Natural Science Edition),2021,41(4):21-31.
[9]王 磊,安邦国,易 金,等.钢渣制备透水砖基层强度及透水性能试验研究[J].混凝土,2021(7):122-125.
WANG Lei,AN Bang-guo,YI Jin,et al.Study on thestrength and permeability of water permeablebrick base course made from steel slag[J].Concrete,2021(7):122-125.
[10]JIANG Y,LING T,SHI C,et al.Characteristics of steel slags and their use incement and concrete-A review[J].Resources,Conservation andRecycling,2018,136:187-197.
[11]GUO J,BAO Y,WANG M.Steel slag inChina:Treatment,recycling,and management[J].Waste Management,2018,78:318-330.
[12]何 亮,詹程阳,吕松涛,等.钢渣沥青混合料应用现状[J].交通运输工程学报,2020,20(2):15-33.
HE Liang,ZHAN Cheng-yang,LYU Song-tao,et al.Application status of steel slag asphalt mixture[J].Journal of Traffic and TransportationEngineering,2020,20(2):15-33.
[13]《中国公路学报》编辑部.中国筑路机械学术研究综述·2018[J].中国公路学报,2018,31(6):1-164.
Editorial Department of China Journal of Highwayand Transport.Review on China's roadconstruction machinery research progress:2018[J].China Journal of Highway andTransport,2018,31(6):1-164.
[14]LI H B,CUI C Y,CAI J,et al.Utilization ofsteel slag in road semi-rigid base:A review[J].Coatings,2022,12(7):994.
[15]辛德军,刘志强,冀 欣,等.干旱寒冷地区水泥稳定钢渣碎石基层特性研究[J].西安科技大学学报,2022,42(1):116-124.
XIN De-jun,LIU Zhi-qiang,JI Xin,et al.Study on thecharacteristics of cement-stabilized steel slag andgravel base in dry and cold region[J].Journal ofXi'an University of Science andTechnology,2022,42(1):116-124.
[16]谭 波,刘 祺,曹忠露,等.减缩增强剂应用于钢渣路面基层材料的试验研究[J].科学技术与工程,2022,22(3):1212-1219.
TAN Bo,LIU Qi,CAO Zhong-lu,et al.Experimentalstudy on application of shrinkage-reducing andreinforcing agent in steel slag as pavement basematerial[J].Science Technology andEngineering,2022,22(3):1212-1219.
[17]WANG S,CHEN G,ZHANG L.Parameterinversion and microscopic damage research ondiscrete element model of cement-stabilized steelslag based on 3D scanning technology[J].Journalof Hazardous Materials,2022,424:127402.
[18]GAO B,YANG C,ZOU Y X,et al.Compaction procedures and associatedenvironmental impacts analysis for application ofsteel slag in road base layer[J].Sustainability,2021,13(8):4396.
[19]王 刚.大厚度水泥稳定碎石基层及其层间处治技术研究[D].广州:华南理工大学,2019.
WANG Gang.Study on thick cement stabilizedmacadam base and its interlayer treatmenttechnology[D].Guangzhou:South ChinaUniversity of Technology,2019.
[20]JIANG Y J,YUAN K J,DENG C Q,et al.Fatigue performance of cement-stabilizedcrushed gravel produced using vertical vibrationcompaction method[J].Journal of Materials inCivil Engineering,2020,32(11):4020318.
[21]胡力群,沙爱民.室内振动压实机结构及利用振动法确定水泥稳定碎石压实标准应注意的问题[J].公路,2010,55(6):132-135.
HU Li-qun,SHA Ai-min.Structure of indoor vibrationcompactor and problems needing attention indetermining compaction standard of cementstabilized macadam by vibration method[J].Highway,2010,55(6):132-135.
[22]常艳婷,陈忠达,张 震,等.不同成型方法级配碎石的抗变形性能[J].武汉大学学报(工学版),2017,50(2):251-256.
CHANG Yan-ting,CHEN Zhong-da,ZHANG Zhen,et al.Study of anti-deformation properties of grademacadam with different molding methods[J].Engineering Journal of WuhanUniversity,2017,50(2):251-256.
[23]黄 兴,魏汝明,袁 玲,等.水泥稳定碎石基层配合比优化设计应用研究[J].公路,2013,58(9):218-223.
HUANG Xing,WEI Ru-ming,YUAN Ling,et al.Application research on the optimization ofmix proportion of cement stabilized crushedstone base[J].Highway,2013,58(9):218-223.
[24]YUAN K,JIANG Y,ZHU B,et al.Effects ofretrieving powder on mechanical and shrinkageproperties of vertical vibration compactedcement-stabilized macadam[J].Construction andBuilding Materials,2022,331:127305.
[25]DENG C Q,JIANG Y J,TIAN T,et al.Resilient modulus and influencing factors ofvertical vibration compacted cement-stabilizedmacadam[J].International Journal of PavementEngineering,2021,22(11):1435-1445.
[26]纪小平,王 涛,周泽洪,等.振动法水泥稳定砾石的力学疲劳特性与强度标准[J].建筑材料学报,2018,21(5):761-767,774.
JI Xiao-ping,WANG Tao,ZHOU Ze-hong,et al.Mechanical and fatigue properties as well asstrength criteria of cement stabilized gravelproduced by vibration compaction method[J].Journal of BuildingMaterials,2018,21(5):761-767,774.

Memo

Memo:
-
Last Update: 2023-10-30