|Table of Contents|

Influence of temperature on mechanical properties and constitutive relationship for polyurethane mixtures(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2025年4期
Page:
13-28
Research Field:
道路工程
Publishing date:

Info

Title:
Influence of temperature on mechanical properties and constitutive relationship for polyurethane mixtures
Author(s):
SUN Min12 HUANG Zhao-liang1 SUN Yan-chao3 REN Shuai-yu1 GU Lu-yao1 BI Yu-feng4
(1. School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China; 2. Postdoctoral Research Workstation, Shandong Hi-Speed Group, Jinan 250099, Shandong, China; 3. Shandong Hengjian Engineering Supervision Consulting Co., Ltd., Weifang 261061, Shandong, China; 4. Innovation Research Institute, Shandong Hi-Speed Group, Jinan 250099, Shandong, China)
Keywords:
pavement engineering polyurethane mixture uniaxial compression test uniaxial tensile test mechanical property constitutive model
PACS:
U414
DOI:
10.19721/j.cnki.1671-8879.2025.04.002
Abstract:
To investigate the mechanical properties of polyurethane mixtures, using the stone-rich polyurethane concrete(SPC-16 and SPC-25)and suspended dense polyurethane concrete(PC-20)as test subjects, mechanical tests on the uniaxial tensile, uniaxial compression, uniaxial penetration, and dynamic modulus were performed at 20 ℃ and 60 ℃, respectively. The failure processes of specimens were monitored, and the effects of temperature and material type on stress-strain curve characteristics, strength, modulus, and other indicators were analyzed. Furthermore, the uniaxial tensile and compression constitutive models for SPC-16, SPC-25, and PC-20 mixtures at 20 ℃ and 60 ℃ were fitted, respectively. The research results indicate that the compressive strength of polyurethane mixture is 50%-62% that of C40 concrete, while the compressive elastic modulus is only 3%-5%, demonstrating favorable compressive mechanical properties. When the test temperature increases from 20 ℃ to 60 ℃, the peak compressive strain of polyurethane mixture significantly increases, while the peak tensile strain decreases. The uniaxial tensile strength decreases by 40%-50%, the tensile elastic modulus decreases by 4%-30%, the uniaxial compressive strength decreases by approximately 40%, the compressive elastic modulus decreases by 30%-70%, and the uniaxial penetration strength decreases by 15%-35%. The mechanical properties of polyurethane mixture remain stable. At 60 ℃, the uniaxial penetration of polyurethane mixture increases by 30%-80%, the dynamic modulus remains above 3 GPa, while the uniaxial penetrations of two asphalt mixtures are more than doubled in contrast, indicating that polyurethane mixtures exhibit superior high-temperature shear resistance and meet the requirements for high-temperature applications. The phase angles of the three polyurethane mixtures under different loading frequencies are smaller than those of modified asphalt mixtures, highlighting the pronounced elastic characteristics. The fitted constitutive model based on the cement concrete achieves an determination coefficient greater than 0.999, demonstrating a high fitting precision. In conclusion, the research findings provide a theoretical foundation for the promotion and practical engineering application of polyurethane mixtures.2 tabs, 23 figs, 31 refs.

References:

[1] 徐 斌,徐 速,吕建华,等.聚合物混凝土发展及桥梁工程应用研究[J]. 混凝土世界,2021(10):89-92.
XU Bin, XU Su, LYU Jian-hua, et al. Research on the development and application of polymer concrete in bridge engineering[J]. China Concrete, 2021(10): 89-92.
[2]吕欣芃.聚氨酯类钢桥面铺装防水粘结层剪切破坏性能研究[D].北京:北京建筑大学,2022.
LYU Xin-peng. Shear failure performance of waterproof adhesive layeron polyurethane mixture steel bridge deck pavement[D] Beijing: Beijing University of Civil Engineering and Architecture, 2022.
[3]邹 瑜.聚氨酯环氧沥青桥面铺装材料研发及其路用性能研究[D].重庆:重庆交通大学,2022.
ZOU Yu. Research and development of polyurethane epoxy asphalt bridge deck pavement material and its road performance[D]. Chongqing: Chongqing Jiaotong University, 2022.
[4]祁 冰.适用于桥面铺装的聚氨酯(PU)改性沥青及混合料性能研究[D].西安:长安大学,2018.
QI Bing. Research on properties of polyurethane(PU)modified asphalt and mixture for deck pavement[D]. Xi'an: Chang'an University, 2018.
[5]夏立翔.单组份聚氨酯混合料水稳定性改善研究[D].北京:北京建筑大学,2023.
XIA Li-xiang. Research on the improvement of water stability of single-component polyurethane mixture[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2023.
[6]李佩佳.路用单组分湿固化聚氨酯冷补液的制备及其冷补料的路用性能研究[D].西安:长安大学,2023.
LI Pei-jia. Preparation of monocomponent moisture-curing polyurethane cold patch liquid for pavement and study on road performance of cold patch mixtures[D]. Xi'an: Chang'an University, 2023.
[7]孙铭鑫.聚氨酯空隙弹性路面混合料的性能研究[D].南京:东南大学,2016.
SUN Ming-xin. Research on performance of polyurethane porous elastic pavement mixture[D]. Nanjing: Southeast University, 2016.
[8]赵宏天,姜添镪,李 凯,等.高温聚氨酯及其混合料路用性能研究[J].当代化工,2023,52(6):1297-1302.
ZHAO Hong-tian, JIANG Tian-yi, LI Kai, et al. Study on road performance of high-temperature polyurethane modified bitumen and its mixtures[J]. Contemporary Chemical Industry, 2023, 52(6): 1297-1302.
[9]CARRERA V, GARCIA-MORALES M, PARTAL P, et al. Novel bitumen/isocyanate-based reactive polymer formulations for the paving industry[J]. Rheologica Acta, 2010, 49(6): 563-572.
[10]张乐乐.聚氨酯改性沥青混合料性能试验研究[J].北方交通,2022(6):55-58.
ZHANG Le-le. Experimental research on performance of polyurethane modified asphalt mixture[J]. Northern Communications, 2022(6): 55-58.
[11]司松涛.聚氨酯多孔弹性混合料长期老化性能研究[D].重庆:重庆交通大学,2022.
SI Song-tao. Study on long-term aging performance of polyurethane porous elastic road surface[D]. Chongqing: Chongqing Jiaotong University, 2022.
[12]井 硕.聚氨酯改性沥青及混合料性能研究[D].济南:山东建筑大学,2024.
JING Shuo. Research on the performance of polyurethane modified asphalt and mixtures[D]. Jinan: Shandong Jianzhu University, 2024.
[13]张安宇.聚氨酯改性沥青的制备及其性能研究[D].西安:长安大学,2022.
ZHANG An-yu. Preparation and performance of polyurethane modified asphalt binder[D]. Xi'an: Chang'an University, 2022.
[14]ZHUANG W, BI Y F, LIU B J, et al. Mechanical properties of polyurethane mixture and load response behaviour of polyurethane composite pavement[J]. Polymers, 2023, 15(2): 417.
[15]雷建华,徐 斌,何旭辉.改性聚氨酯混凝土受压性能及本构关系研究[J].铁道科学与工程学报,2023,20(1):278-288.
LEI Jian-hua, XU Bin, HE Xu-hui. Research on compressive properties and constitutive relation of modified polyurethane concrete[J]. Journal of Railway Science and Engineering, 2023, 20(1): 278-288.
[16]朱 赫,黄方林,张爱品,等.不同温度下改性聚氨酯混凝土单轴拉伸试验及本构关系[J].复合材料学报,2023,40(8):4659-4669.
ZHU He, HUANG Fang-lin, ZHANG Ai-pin, et al. Tensile properties and constitutive relation of modified polyurethane concrete at different temperatures[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4659-4669.
[17]XIANG H, XIA H Y, CHEN H X. et al. Influence of moisture-curing reaction on the mechanical properties of one-component polyurethane mixtures[J]. Journal of Materials Science, 2021, 56(27): 15069-15086.
[18]徐 斌,牛石磊,王仁贵,等.钢桥面聚酯型聚氨酯混凝土路用性能试验[J].土木工程与管理学报,2023,40(6):9-14.
XU Bin, NIU Shi-lei, WANG Ren-gui, et al. Experiment on road performance of polyester polyurethane concrete for steel bridge deck[J]. Journal of Civil Engineering and Management, 2023, 40(6): 9-14.
[19]张艳芳.聚氨酯改性沥青混凝土的高温稳定性研究[J].石家庄铁路职业技术学院学报,2023,22(2):12-15.
ZHANG Yan-fang. Study on high temperature stability of polyurethane modified asphalt concrete[J]. Journal of Shijiazhuang Institute of Railway Technology, 2023, 22(2): 12-15.
[20]焦 鼎.聚氨酯基纤维增强弹性混凝土力学性能研究及其在桥面连续构造中的应用[D].哈尔滨:哈尔滨工业大学,2021.
JIAO Ding. Study on mechanical properties of polyurethane-based fiber-reinforced elastic concrete and its application in continuous structure of bridge deck[D]. Harbin: Harbin Institute of Technology, 2022.
[21]赵 玺,王佐才,王均义,等.钢桥面铺装ECO改性聚氨酯混凝土耐久性能研究[J].工业建筑,2023,53(增2):726-731,735.
ZHAO Xi, WANG Zuo-cai, WANG Jun-yi, et al. Study on durability performance of ECO modified polyurethane concrete for steel bridge deck[J]. Industrial Building, 2023, 53(S2): 726-731, 735.
[22]唐建辉,白 银,陈徐东,等.温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J].材料导报,2024,38(4):107-112.
TANG Jian-hui, BAI Yin, CHEN Xu-dong, et al. Effect of temperature on macro- and micro-bonding characteristics between waterborne polyurethane and concrete[J]. Materials Reports, 2024, 38(4): 107-112.
[23]范钟亓,单浩睿,王子晗,等.聚氨酯钢桥面铺装防水粘结层剪切疲劳性能研究[J].市政技术,2024,42(5):181-186,206.
FAN Zhong-qi, SHAN Hao-rui, WANG Zi-han, et al. Research on the shear fatigue performance of the waterproof adhesive layer in polyurethane steel bridge deck pavement[J]. Journal of Municipal Technology, 2024,42(5): 181-186, 206.
[24]石泽雄.高性能钢桥面铺装材料开发及性能评价[D].北京:北京建筑大学,2018.
SHI Ze-xiong. Development and evaluation of high performance materials for steel bridge deck pavement[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2018.
[25]侯德瑞.聚氨酯混合料路面荷载响应行为研究[D].济南:山东建筑大学,2024.
HOU De-rui. Research on load response behavior of polyurethane mixture road surface[D]. Jinan: Shandong Jianzhu University, 2024.
[26]李亚文.钢-ECO组合结构层间界面性能研究[D].长沙:中南大学,2022.
LI Ya-wen. Research on interlayer interface performance of steel-ECO composite structure[D]. Changsha: Central South University, 2022.
[27]牛石磊.聚酯型聚氨酯混凝土钢桥面铺装结构力学性能研究[D].合肥:合肥工业大学,2023.
NIU Shi-lei. Study on mechanical performance of steel bridge deck pavement structure using polyester polyurethane concrete[D]. Hefei: Hefei University of Technology, 2023.
[28]姜金龙.钢纤维对聚氨酯砂浆力学性能及界面性能影响的研究[D].天津:天津大学,2020.
JIANG Jin-long. Effect of steel fiber on the mechanical properties and interfacial properties of polyurethane mortar[D]. Tianjin: Tianjin University, 2020.
[29]白晓玮.混凝土损伤本构关系的研究与应用[D].郑州:郑州大学,2017.
BAI Xiao-wei. Study and application on the damage constitutive law for concrete[D]. Zhengzhou: Zhengzhou University, 2017.
[30]孙 敏,侯德瑞,耿立涛,等.多碎石聚氨酯混凝土路用性能与力学特性研究[J].硅酸盐通报,2024,43(2):746-756.
SUN Min, HOU De-rui, GENG Li-tao, et al. Road performances and mechanical properties of multi-gravel polyurethane concrete[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 746-756.
[31]CONG Pei-liang, LIU Chang-hao, HAN Zhi-yu, et al. A comprehensive review on polyurethane modified asphalt: Mechanism, characterization and prospect[J]. Journal of Road Engineering, 2023, 3(4): 315-335.

Memo

Memo:
-
Last Update: 2025-07-25