[1]张华.服务感知与群体异质性视角的公共充电服务满意度影响机制[J].长安大学学报(自然科学版),2025,45(6):227-236.
 ZHANG Hua.Influence mechanism of public charging service satisfaction from perspectives of service perception and group heterogeneity[J].Journal of Chang’an University (Natural Science Edition),2025,45(6):227-236.
点击复制

服务感知与群体异质性视角的公共充电服务满意度影响机制()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年6期
页码:
227-236
栏目:
交通工程
出版日期:
2025-11-30

文章信息/Info

Title:
Influence mechanism of public charging service satisfaction from perspectives of service perception and group heterogeneity
文章编号:
1671-8879(2025)06-0227-10
作者:
张华
(中共陕西省委党校(陕西行政学院)文化与科技教研部,陕西 西安 710061)
Author(s):
ZHANG Hua
(Department of Culture and Science and Technology, Party School of Shaanxi Provincial Committee of C.P.C(Shaanxi Academy of Governance), Xi'an 710061, Shaanxi, China)
关键词:
交通工程 公共充电服务满意度 结构方程模型 电动出租车 服务感知
Keywords:
traffic engineering public charging service satisfaction structural equation modeling electric taxis service perception
分类号:
U411
文献标志码:
A
摘要:
针对现有研究多集中于电动汽车购车行为与充电设施技术规划,从服务感知维度系统探讨充电满意度影响机制的实证研究仍较为薄弱,尤其缺乏针对高依赖群体的深入分析的状况,基于365位西安市电动出租车驾驶人对公共充电服务感知数据,通过结构方程模型(SEM)与多元有序Logit模型,从服务感知与群体异质性2个维度实证分析充电满意度的影响机制。研究构建包含空间可达性、设施可用性、操作便捷性与人性化服务4个维度的感知评价体系,检验其对总体满意度的作用路径,同时引入驾驶人个人属性与充电行为特征变量,识别不同群体间的满意度差异。研究结果表明:操作便捷性、空间可达性和设施可用性均对充电满意度存在显著正向影响(路径系数分别为0.44、0.34、0.20),而人性化服务的影响未通过显著性检验; 年龄、车辆类型、车辆性质、充电地点与充电习惯等因素显著影响满意度评价,具体表现为年长驾驶人、网约车驾驶人、混合动力车驾驶人及固定地点充电用户的满意度更高。研究从服务感知与用户异质性双重视角拓展了充电满意度研究的理论框架,可为公共充电服务的精准优化、运营效率提升及新能源汽车推广政策制定提供实证依据与实践参考。
Abstract:
Most existing research has primarily focused on the purchasing behavior of electric vehicles and the technical planning of charging facilities. However, empirical studies systematically exploring the influencing mechanism of charging satisfaction from the perspective of service perception remain relatively scarce, particularly lacking in-depth analyses targeting highly dependent groups. Based on the perceived data of public charging services from 365 electric taxi drivers in Xi'an, this study empirically analyzed the influencing mechanism of charging satisfaction from two dimensions—service perception and group heterogeneity—by employing structural equation modeling(SEM)and multivariate ordered logit models.A perception evaluation system was constructed, encompassing four dimensions: spatial accessibility, facility availability, operational convenience, and humanized services. The study examined the pathways through which these dimensions influenced overall satisfaction. Additionally, personal attributes of drivers and variables characterizing their charging behaviors were introduced to identify satisfaction differences across various groups.The findings revealed that operational convenience, spatial accessibility, and facility availability all exerted significant positive impacts on charging satisfaction(with path coefficients of 0.44, 0.34, and 0.20, respectively), whereas the influence of humanized services did not pass the significance test. Factors such as age, vehicle type, vehicle ownership, charging location, and charging habits were found to significantly affect satisfaction evaluations. Specifically, older drivers, ride-hailing drivers, hybrid vehicle drivers, and those who charged at fixed locations reported higher levels of satisfaction.This study expands the theoretical framework for research on charging satisfaction from the dual perspectives of service perception and user heterogeneity. It provides empirical evidence and practical references for the precise optimization of public charging services, the enhancement of operational efficiency, and the formulation of policies aimed at promoting new energy vehicles.6 tabs, 1 fig, 30 refs.

参考文献/References:

[1] HUSSEIN T, ALI B, TUQA A, et al. Development and comparative analysis between battery electric vehicles(BEV)and fuel cell electric vehicles(FCEV)[J]. Applied Energy, 2025, 388, 125726.
[2]SHERAZ A, SINGHA C, WORNCHANOK C. Impact of charging infrastructure on willingness to pay for EV: Mediating role of driving experience and behavior intentions[J]. Acta Psychologica, 2025, 254, 104833.
[3]KANG J, CHEN S, FENG Z X, et al. The impact of E-bus satisfaction on driving behaviour: A questionnaire-based study on E-bus drivers[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 83: 238-251.
[4]SHI L X, OU S Q, ZHOU Y Z, et al. Assessing Chinese user satisfaction with electric vehicle battery performance from online reviews[J]. Transportation Research Part D: Transport and Environment, 2025, 141, 104644.
[5]YI T, CHENG X B, ZHENG H, et al. Research on location and capacity optimization method for electric vehicle charging stations considering user's comprehensive satisfaction[J]. Energies, 2019, 12: 1915.
[6]王玉生,罗欣欣,单香琦.电动公交车队置换与充电设施布局协同优化[J].中国公路学报,2024,37(4):72-83.
WANG Yus-heng, LUO Xin-xin, SHAN Xiang-qi. Coordinated optimization of electric bus fleet replacement and charging facility deployment[J]. China Journal of Highway and Transport, 2024, 37(4): 72-83.
[7]王立晓,王忠辉.基于充电选择行为的充电设施布局研究[J].系统仿真学报,2023,35(11):2312-2320.
WANG Li-xiao, WANG Zhong-hui. Layout of charging facilities based on charging choice behavior[J]. Journal of System Simulation, 2023, 35(11): 2312-2320.
[8]杨 扬,张天雨,朱宇婷,等.考虑建设时序和动态需求的城际公路充电设施优化布局[J].清华大学学报(自然科学版),2022,62(7):1163-1177,1219.
YANG Yang, ZHANG Tian-yu, ZHU Yu-ting, et al. Optimal layout of intercity highway charging facilities considering construction timing and dynamic demand[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1163-1219, 1219.
[9]IQBAL H J, ABU H, AHMAD R, et al. User satisfaction of electric-vehicles about charging stations(home, outdoor, and workplace)[J]. Turkish Journal of Computer and Mathematics Education, 2021, 3(12): 3589-3593.
[10]LIN W, HENG W, YANG L, et al. Technical review of electric vehicle charging distribution models with considering driver behaviors impacts[J]. Journal of Traffic and Transportation Engineering(English Edition), 2024, 4(11): 643-666.
[11]KAMANA-WILLIAMS B, BISHOP D, HOOPER G, et al. Driving change: Electric vehicle charging behavior and peak loading[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113953.
[12]JIANG Q H, ZHANG N, HE Y S, et al. Large-scale public charging demand prediction with a scenario- and activity-based approach[J]. Transportation Research Part A: Policy and Practice, 2024, 179: 103935.
[13]LIAO Y, ÇAGˇLAR T, FRANCES S, et al. Impacts of charging behavior on BEV charging infrastructure needs and energy use[J]. Transportation Research Part D: Transport and Environment, 2023,116: 103645.
[14]MICHAEL D J, EUGENE W A, CLAES F. Rational and adaptive performance expectations in a customer satisfaction framework[J]. The Journal of Consumer Research, 1995, 4(21): 695-707.
[15]WANG Y D, HUANG W J, WEI L S, et al. Towards urban electric taxi systems in smart cities: The battery swapping challenge[J]. Fortschritte der Physik, 2018, 67(3): 1-5.
[16]JORAM H M, LANGBROEK J H. Coping with a growing number of e-taxis in Greater Stockholm: A stated adaptation approach[J]. Case Studies on Transport Policy, 2020, 2(8): 576-585.
[17]VALERIYA A, JED J C, ANDREA K, et al. The potential for community financed electric vehicle charging infrastructure[J]. Transportation Research Part D: Transport and Environment, 2020, 88: 102541.
[18]LLOSA S, CHANDON J, ORSINGHER C. An empirical study of SERVQUAL dimensionality[J]. Service Industries Journal, 1998, 18: 16-44.
[19]柴彦威,塔 娜.中国地理学的行为革命及其理论内涵[J].地理研究,2024,43(9):2259-2270.
CHAI Yan-wei, TA Na. The behavioral revolution of Chinese geography and its theoretical implications[J]. Geographical Research, 2024, 43(9): 2259-2270.
[20]PHILIPSEN R, SCHMIDT T, VAN HEEK J, et al. Fast-charging station here, please! User criteria for electric vehicle fast-charging locations[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 40: 119-129.
[21]王金亭,张玉英.排队库存系统理论研究进展[J].运筹学学报(中英文),2025,29(3):77-92.
WANG Jin-ting, ZHANG Yu-ying. Theoretical research progress in queuing-inventory systems[J]. Journal of Operations Research(Chinese/English), 2025, 29(3): 77-92.
[22]MARCO G, ADRIANA M, MARIANGELA S. Barriers to the adoption of electric cars: Evidence from an Italian survey[J]. Energy Policy, 2020, 146: 111812.
[23]CHUNG Y W, BEHNAM K, LI T Y, et al. Ensemble machine learning-based algorithm for electric vehicle user behavior prediction[J]. Applied Energy, 2019, 254: 113732.
[24]杨衍江.服务主导逻辑(S-D Logic)评说[J].肇庆学院学报,2022,43(6):27-30.
YANG Yan-jiang. A review of service-dominant logic(S-D Logic)[J]. Journal of Zhaoqing University, 2022, 43(6): 27-30.
[25]樊根耀,安天娇,李武选.基于改进KANO模型的服务优化研究[J].重庆理工大学学报(自然科学),2020,34(5):233-237.
FAN Gen-yao, AN Tian-jiao, LI Wu-xuan. Research on service optimization based on the improved Kano model[J]. Journal of Chongqing University of Technology(Natural Science), 2020, 34(5): 233-237.
[26]JOHN E A, MARIUS L, MICHAEL H. What electric vehicle users want: Real-world preferences for public charging infrastructure[J]. International Journal of Sustainable Transportation, 2018, 5(12): 341-352.
[27]ZOEPF S, MACKENZIE D, KEITH D, et al. Charging choices and fuel displacement in a large-scale demonstration of plug-in hybrid electric vehicles[J]. Journal of the Transportation Research Board, 2013, 2385(1): 1-10.
[28]SUN X, YAMAMOTO T, MORIKAWA T. Fast-charging station choice behavior among battery electric vehicle users[J]. Transportation Research Part D: Transport and Environment, 2016, 46: 26-39.
[29]ANDERSON, EUGENE W, FORNELL, et al. Foundations of the american customer satisfaction index[J]. Total Quality Management, 2000, 11(7): 869-882.
[30]VÍTOR F, MARIO F. Factors influencing cooperator satisfaction: A study applied to wine cooperatives in Portugal[J]. Journal of Cleaner Production, 2018, 191: 15-25.
[31]ESPALLARDO M, LARIO N, TANTIUS P. Farmer's satisfaction and intention to continue as members of agricultural marketing co-operatives: Neoclassical versus transaction costs considerations[J]. European Review of Agricultural Economics, 2013, 40(2): 239-260.
[32]JOSÉ E L, RONALDO L L, WANDERLEY R, et al. Institutional image and the role of the managers of a major brazilian financial institution: Analysis of perceptions of high income customers[J]. Revista brasileira de marketing, 2017, 16(4): 426-438.
[33]DORN L, STEPHEN L, AF WÅHLBERG A, et al. Development and validation of a self-report measure of bus driver behaviour[J]. Ergonomics, 2010, 53(12): 1420-1433.
[34]RAGGATT P T, MORRISSEY S A. A field study of stress and fatigue in long-distance bus drivers[J]. Behavioral Medicine, 1997, 23(3): 122-129.

相似文献/References:

[1]王建伟,李娉,高洁,等.中国交通运输碳减排区域划分[J].长安大学学报(自然科学版),2012,32(01):0.
[2]李曙光,周庆华.具有破坏排队的离散时间动态网络装载算法[J].长安大学学报(自然科学版),2012,32(01):0.
[3]凌海兰,郗恩崇.基于随机波动条件的公交客运量预测模型[J].长安大学学报(自然科学版),2012,32(01):0.
[4]田娥,肖庆,陆小佳,等.安全驾驶的横向安全预警报警阈值的确定[J].长安大学学报(自然科学版),2012,32(01):0.
[5]侯贻栋,赵炜华,魏 朗,等.驾驶人空间距离判识规律心理学分析[J].长安大学学报(自然科学版),2012,32(03):86.
 HOU Yi-dong,ZHAO Wei-hua,WEI Lang,et al.Analysis on psychology in cognitive distance about drivers[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):86.
[6]赵跃峰,张生瑞,魏 华.隧道群路段运行速度特性分析[J].长安大学学报(自然科学版),2012,32(06):67.
 ZHAO Yue-feng,ZHANG Sheng-rui,WEI hua.Operating speed characteristics of tunnel group section[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):67.
[7]林 杉,许宏科,刘占文.一种高速公路隧道交通流元胞自动机模型[J].长安大学学报(自然科学版),2012,32(06):73.
 LIN Shan,XU Hong-ke,LIU Zhan-wen.One cellular automaton traffic flow model for expressway tunnel[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):73.
[8]刘俊德,徐 兵,梁永东,等.交通事故下高速公路行车安全评估[J].长安大学学报(自然科学版),2012,32(06):78.
 LIU Jun-de,XU bing,LIANG Yong-dong,et al.Traffic safety assessment of expressway in the accident[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):78.
[9]芮海田,吴群琪,赵跃峰,等.公路建设对区域经济发展的影响分析——以陕西省为例[J].长安大学学报(自然科学版),2012,32(06):83.
 RUI Hai-tian,WU Qun-qi,ZHAO Yue-feng,et al.Influence of highway construction on regional economy development——taking Shaanxi as an example[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):83.
[10]彭 辉,续宗芳,韩永启,等.城市群城际运输结构配置客流分担率模型[J].长安大学学报(自然科学版),2012,32(02):91.
 PENG Hui,XU Zong-fang,HAN Yong-qi,et al.Sharing ratios model of passenger flows in intercity transportation structure configuration among urban agglomeration[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):91.

备注/Memo

备注/Memo:
收稿日期:2025-05-23
基金项目:2023年度高等教育服务创新驱动发展战略研究项目(2023HZ1351); 陕西省重点研发计划项目(2022GY-326)
作者简介:张 华(1968-),男,甘肃庄浪人,副教授,硕士研究生导师,E-mail:2858573809@qq.com。
更新日期/Last Update: 2025-12-20