[1]孙博,肖相俊,陈勇,等.基于综合变权与多源指标评价的桥梁健康评估[J].长安大学学报(自然科学版),2025,45(6):200-2015.
 SUN Bo,XIAO Xiang-jun,CHEN Yong,et al.Bridge health assessment based on comprehensive variable weight and multi-source indicator evaluation[J].Journal of Chang’an University (Natural Science Edition),2025,45(6):200-2015.
点击复制

基于综合变权与多源指标评价的桥梁健康评估()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年6期
页码:
200-2015
栏目:
桥梁智能运维与防灾减灾
出版日期:
2025-11-30

文章信息/Info

Title:
Bridge health assessment based on comprehensive variable weight and multi-source indicator evaluation
文章编号:
1671-8879(2025)06-0200-16
作者:
孙博1肖相俊1陈勇23吴涛3阮伟东1
(1. 浙江工业大学 土木工程学院,浙江 杭州 310023; 2. 浙江大学 建筑工程学院,浙江 杭州 310058; 3. 上海市建筑科学研究院有限公司,上海 200032)
Author(s):
SUN Bo1 XIAO Xiang-jun1 CHEN Yong23 WU Tao3 RUAN Wei-dong1
(1. College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China; 2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China; 3. Shanghai Research Institute of Building Sciences Co., Ltd., Shanghai 200032, China)
关键词:
桥梁工程 健康评估 主客观信息 模糊变权 多源异构指标 优劣解距离法
Keywords:
bridge engineering health assessment subjective-objective information fuzzy variable weight multi-source heterogeneous indicator technique for order preference by similarity to an ideal solution
分类号:
U446
文献标志码:
A
摘要:
针对现有桥梁状态评估中赋权信息的多样性和指标评价数据多源异构性问题,提出一种基于主客观信息变权与多源异构指标评价的桥梁健康状态评估方法,基于层次分析法(AHP)和改进熵权法(EWM)赋权指标主客观信息,并运用博弈论思想组合优化了主客观权重,再结合指标评价值,运用变权理论确定了指标综合变权权重; 通过梯形模糊数的统一表达建立了多源异构(语义型、数值型、空间序列型)指标分类评价方法,并在数值型和空间序列型指标评价时考虑了多测点评价结果的变权修正; 采用虚拟负理想解改进了传统优劣解距离法(TOPSIS),运用水平截集理论计算了在不同截集下的模糊相对贴合度区间,并对其进行去模糊化和标准化处理,得到了综合评估结果,并给出了桥梁状态等级划分标准; 采用建立的方法评估了一座单塔斜拉桥的健康状态,并分析了方法的关键环节。评估结果表明:案例桥梁健康状态评估值为0.837 2,处于B级良好状态,应进行日常保养和专项检测后小修; 主客观优化赋权法综合考量了专家评判的主客观信息,优化赋权结果总是更接近主观赋权结果,说明专家对指标两两比较所蕴含的信息对优化权重的影响更大; 桥墩严重劣化情况下,墩顶截面高应力指标评价值显著降低,该指标对应风险已处于较高水平,控制结构整体健康状态; 以指标评价值20为例,不考虑变权修正的评估结果为0.633 0,简单AHP的评估结果为0.568 5,考虑变权修正和改进TOPSIS的评估结果为0.379 6; 变权修正能够对异常指标构建有效的惩罚机制,改进TOPSIS则进一步强化了对评估对象与负理想解接近程度的辨识能力,使得综合评估结果更能体现出桥梁的实际状态。
Abstract:
To address the diversity of weighting information and multi-source heterogeneity of indicator evaluation data in current bridge health condition assessment, a bridge health condition assessment method based on variable weighting of subjective-objective information and multi-source heterogeneous indicator evaluation was proposed. The subjective and objective information of indicators were weighted through the analytic hierarchy process(AHP)and improved entropy weight method(EWM), and the game theory was applied to combinatorially optimize the subjective and objective weights. Then, combined with the evaluation values of indicators, the variable weighting theory was used to determine the comprehensive variable weights of indicators. A classification and evaluation method for multi-source heterogeneous(semantic, numerical, and spatial sequence)indicators was established through the unified expression of trapezoidal fuzzy numbers. The variable weighting correction for multi-measurement point evaluation results was considered in the evaluation of numerical and spatial sequence indicators. A virtual negative ideal solution was proposed to improve the traditional technique for order preference by similarity to an ideal solution(TOPSIS). The horizontal cut-off set theory was applied to calculate the fuzzy relative fit intervals under different cut-off sets, and the comprehensive assessment results were obtained through the defuzzification and standardization process. Then, the classification criteria for bridge status levels were provided. The established method was applied to evaluate the health condition of an single-tower cable-stayed bridge, and key steps of the method were analyzed. The assessment results show that the assessment value of the example bridge health condition is 0.837 2, which is in a good health condition(Grade B). Daily maintenance and minor repairs after special inspections should be carried out. The subjective-objective optimization weighting method comprehensively considers the subjective-objective information from the expert evaluations. The optimized weighting results are always closer to the subjective weighting results, indicating that the information contained in pairwise comparisons from experts has a greater impact on the optimized weights. Under severe deterioration of piers, the evaluation value of the high-stress indicator of pier top section significantly decreases. This indicator corresponds to a relatively high risk level and controls the overall health condition of the structure. Taking the indicator evaluation value of 20 as an example, the assessment value is 0.633 0 when ignoring the variable weighting correction, and 0.568 5 with simple AHP. When the variable weighting correction and improved TOPSIS are adopted, the assessment result changes into 0.379 6. The variable weighting correction establishes an effective penalty mechanism for abnormal indicators, while the improved TOPSIS further enhances the ability to identify the distance between the assessment target and the negative ideal solution, making the comprehensive assessment results better reflect the actual bridge condition.10 tabs, 11 figs, 31 refs.

参考文献/References:

[1] 中华人民共和国交通运输部.2023年交通运输行业发展统计公报[J].中国水运,2024(8):31-35.
Ministry of Transport of the People's Republic of China. Statistical bulletin on development of transportation industry in 2023[J]. China Water Transport, 2024(8): 31-35.
[2]黄 侨,任 远,许 翔,等.大跨径缆索承重桥梁状态评估的研究现状与发展[J].哈尔滨工业大学学报,2017,49(9):1-9.
HUANG Qiao, REN Yuan, XU Xiang, et al. Research progress of condition evaluation for large span cable supported bridges[J]. Journal of Harbin Institute of Technology, 2017, 49(9): 1-9.
[3]孙 博,肖汝诚.基于层次分析-模糊综合评价法的桥梁火灾风险评估体系[J].同济大学学报(自然科学版),2015,43(11):1619-1625.
SUN BO, XIAO Ru-cheng. Bridge fire risk assessment system based on analytic hierarchy process-fuzzy comprehensive evaluation method[J]. Journal of Tongji University(Natural Science), 2015, 43(11): 1619-1625.
[4]陈 娜,向 辉,叶 强,等.基于层次分析法的弹性城市评价体系研究[J].湖南大学学报(自然科学版),2016,43(7):146-150.
CHEN Na, XIANG Hui, YE Qiang, et al. An AHP-based approach for evaluation index system of resilience city[J]. Journal of Hunan University(Natural Sciences), 2016, 43(7): 146-150.
[5]许 翔,黄 侨,任 远,等.基于群组AHP的悬索桥状态评估指标权重确定[J].湖南大学学报(自然科学版),2018,45(3):122-128.
XU Xiang, HUANG Qiao, REN Yuan, et al. Determination of index weights in suspension bridge condition assessment based on group-AHP[J]. Journal of Hunan University(Natural Sciences), 2018, 45(3): 122-128.
[6]NYIMBILI P H, ERDEN T. Comparative evaluation of GIS-based best-worst method(BWM)for emergency facility planning: perspectives from two decision-maker groups[J]. Natural Hazards, 2021, 105: 1031-1067.
[7]ROY P K, SHAW K. Modelling a sustainable credit score system(SCSS)using BWM and fuzzy TOPSIS[J]. International Journal of Sustainable Development and World Ecology, 2022, 29(3): 195-208.
[8]迟国泰,李 刚,程砚秋.基于AHP-标准离差的人的全面发展评价模型及其实证研究[J].管理学报,2010,7(2):301-310.
CHI Guo-tai, LI Gang, CHENG Yan-qiu. The human all-round development evaluation model based on AHP and standard deviation and empirical study[J]. Chinese Journal of Management, 2010, 7(2): 301-310.
[9]赵书强,汤善发.基于改进层次分析法、CRITIC法与逼近理想解排序法的输电网规划方案综合评价[J].电力自动化设备,2019,39(3):143-148,162.
ZHAO Shu-qiang, TANG Shan-fa. Comprehensive evaluation of transmission network planning scheme based on improved analytic hierarchy process, CRITIC method and TOPSIS[J]. Electric Power Automation Equipment, 2019, 39(3): 143-148, 162.
[10]SUN B, ZHOU H K, DONG F H, et al. Risk assessment of bridge construction safety considering multi-information fusion[J]. Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2022, 8(4): 04022045.
[11]LIU H B, WANG X R, TAN G J, et al. System reliability evaluation of a bridge structure based on multivariate copulas and the AHP-EW method that considers multiple failure criteria[J]. Applied Sciences, 2020, 10(4): 1399.
[12]杨永清,杨 灯,余 取.基于不确定AHP的桥梁加固方案模糊综合评价[J].西南交通大学学报,2019,54(2):219-226,216.
YANG Yong-qing, YANG Deng, YU Qu. Fuzzy comprehensive evaluation of bridge reinforcement scheme based on uncertain AHP[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 219-226, 216.
[13]马亚丽,王东炜,张爱林.在役桥梁结构健康等级的多级模糊综合评判[J].北京工业大学学报,2005,31(1):36-40.
MA Ya-li, WANG Dong-wei, ZHANG Ai-lin. A structural health-evaluating method of bridge on service: multi-phase fuzzy comprehensive evaluation[J]. Journal of Beijing University of Technology, 2005, 31(1): 36-40.
[14]JTG/T H21—2011,公路桥梁技术状况评定标准[S].
JTG/T H21—2011, standards for technical condition evaluation of highway bridges[S].
[15]JTG/T J21—2011,公路桥梁承载能力检测评定规程[S].
JTG/T J21—2011, specification for inspection and evaluation of load-bearing capacity of highway bridges[S].
[16]王其昂,刘 泉,马占国,等.基于稀疏贝叶斯学习与改进D-S证据理论多源数据融合的结构性能评估[J/OL].工程力学,(2024-11-08)[2025-10-15].https://link.cnki.net/urlid/11.2595.O3.20241108.1410.018.
WANG Qi-ang, LIU Quan, MA Zhan-guo, et al. Structural performance assessment enabled by sparse Bayesian learning and by improved D-S evidence theory for multi-data fusion[J]. Engineering Mechanics,(2024-11-08)[2025-10-15]. https://link.cnki.net/urlid/11.2595.O3.20241108.1410.018.
[17]王其昂,吴子燕,贾兆平.桥梁系统地震多维易损性分析[J].工程力学,2013,30(10):192-198.
WANG Qi-ang, WU Zi-yan, JIA Zhao-ping. Multi-dimensional fragility analysis of bridge system under earthquake[J]. Engineering Mechanics, 2013, 30(10): 192-198.
[18]HWANG, C L, YOON, K. Methods for multiple attribute decision making[M]//BECKMANN M, KÜNZI H P. Multiple Attribute Decision Making. Berlin: Springer, 1981: 186, 58-191.
[19]陆易凡,刘 达,张 洋,等.基于博弈论组合赋权和改进优劣解距离法的输变电工程建设时序规划[J].科学技术与工程,2024,24(10):4124-4131.
LU Yi-fan, LIU Da, ZHANG Yang, et al. Construction sequence planning of power transmission and transformation projects based on game theory combined weighting and improved technique for order preference by similarity to ideal solution[J]. Science Technology and Engineering, 2024, 24(10): 4124-4131.
[20]XU B S, QI N N, ZHOU J P, et al. Reliability assessment of highway bridges based on combined empowerment-TOPSIS method[J]. Sustainability, 2022, 14(13): 7793.
[21]孙淼军,陈玉静,杨风艳,等.基于熵权-TOPSIS法的漂浮式海上风电基础结构方案多准则评价研究[J].太阳能学报,2025,46(4):406-414.
SUN Miao-jun, CHEN Yu-jing, YANG Feng-yan, et al. Multi-criteria evaluation of floating offshore wind turbine substructure schemes based on entropy weight-TOPSIS method[J]. Acta Energiae Solaris Sinica, 2025, 46(4): 406-414.
[22]陈 涛,刘 勇,贾 然,等.改进熵权TOPSIS的综合传动装置磨损状态评价方法[J].湖南大学学报(自然科学版),2024,51(12):10-18.
CHEN Tao, LIU Yong, JIA Ran, et al. Wear state evaluation method based on improved entropy-weighted TOPSIS for power-shift steering transmission[J]. Journal of Hunan University(Natural Sciences), 2024, 51(12): 10-18.
[23]何 赟,施先亮,单泓睿,等.基于模糊-TOPSIS的中欧班列高质量发展动态评价体系[J].中国铁道科学,2025,46(4):235-247.
HE Yun, SHI Xian-liang, SHAN Hong-rui, et al. Dynamic evaluation system for high-quality development of China railway express based on fuzzy-TOPSIS[J]. China Railway Science, 2025, 46(4): 235-247.
[24]NURANI A I, PRAMUDYANINNGRUM A T, FADHILA S R, et al. Analytical hierarchy process(AHP), fuzzy AHP, and TOPSIS for determining bridge maintenance priority scale in Banjarsari, Surakarta[J]International Journal of Science and Applied Science: Conference Series, 2017, 2(1): 60-71.
[25]MALEKINEZHAD H, SEPEHRI M, PHAM Q B, et al. Application of entropy weighting method for urban flood hazard mapping[J]. Acta Geophysica, 2021, 69, 841-854.
[26]张近乐,任 杰.熵理论中熵及熵权计算式的不足与修正[J].统计与信息论坛,2011,26(1):3-5.
ZHANG Jin-le, REN Jie. The deficiencies and amendments of the calculation formulate of entropy and entropy weight in the theory of entropy[J]. Statistics and Information Forum, 2011, 26(1): 3-5.
[27]刘文奇.均衡函数及其在变权综合中的应用[J].系统工程理论与实践,1997,17(4):58-64,74.
LIU Wen-qi. Balanced function and its application for variable weight synthesizing[J]. Systems Engineering Theory and Practice, 1997, 17(4): 58-64, 74.
[28]兰 海,史家钧.灰色关联分析与变权综合法在桥梁评估中的应用[J].同济大学学报(自然科学版),2001,29(1):50-54.
LAN Hai, SHI Jia-jun. Degree of grey incidence and variable weight synthesizing applied in bridge assessment[J]. Journal of Tongji University(Natural Science), 2001, 29(1): 50-54.
[29]胡永宏.对TOPSIS法用于综合评价的改进[J].数学的实践与认识,2002,32(4):572-575.
HU Yong-hong. The improved method for topsis in comprehensive evaluation[J]. Mathematics in Practice and Theory, 2002, 32(4): 572-575.
[30]屈 兵,漆安宁,余加仙,等.基于模糊变权TOPSIS的桥梁状态评估方法[J].莆田学院学报,2023,30(2):102-108.
QU Bing, QI An-ning, YU Jia-xian, et al. A bridge condition assessment method based on fuzzy variable weighted TOPSIS[J]. Journal of Putian University, 2023, 30(2): 102-108.
[31]于丽英,蒋宗彩.基于α-水平截集的模糊TOPSIS方法在公共危机管理能力评价中的应用研究[J].运筹与管理,2013,22(5):203-208.
YU Li-ying, JIANG Zong-cai. Application of fuzzy TOPSIS based on alpha level sets in evaluating public crisis management capability[J]. Operations Research and Management Science, 2013, 22(5): 203-208.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):44.

备注/Memo

备注/Memo:
收稿日期:2025-04-30
基金项目:国家自然科学基金项目(52278226,52571314); 浙江省自然科学基金项目(LY24E080011,LY23E090004); 上海市交通委员会科研计划项目(JT2023-KY-019); 上海建科集团股份有限公司科研创新项目(KY10000038.20240008)
作者简介:孙 博(1988-),男,江苏徐州人,副教授,工学博士,E-mail:sunbo2017@zjut.edu.cn。
通信作者:阮伟东(1989-),男,浙
更新日期/Last Update: 2025-12-20