[1]辛公锋,胡业荣,龙关旭,等.基于AVOA-MC和综合目标值的桥梁构件智能养护决策[J].长安大学学报(自然科学版),2025,45(6):169-183.
 XIN Gong-feng,HU Ye-rong,LONG Guan-xu,et al.Intelligent maintenance decision-making of highway bridge members based on AVOA-MC and comprehensive target value[J].Journal of Chang’an University (Natural Science Edition),2025,45(6):169-183.
点击复制

基于AVOA-MC和综合目标值的桥梁构件智能养护决策()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年6期
页码:
169-183
栏目:
桥梁智能运维与防灾减灾
出版日期:
2025-11-30

文章信息/Info

Title:
Intelligent maintenance decision-making of highway bridge members based on AVOA-MC and comprehensive target value
文章编号:
1671-8879(2025)06-0169-15
作者:
辛公锋12胡业荣1龙关旭2徐传昶2梁志强1梁鹏1
(1. 长安大学 公路学院,陕西 西安 710064; 2. 山东高速集团有限公司创新研究院,山东 济南 250014)
Author(s):
XIN Gong-feng12 HU Ye-rong1 LONG Guan-xu2 XU Chuan-chang2LIANG Zhi-qiang1 LIANG Peng1
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Innovation Research Institute,Shandong High-Speed Group Co., Ltd., Jinan 250101, Shandong, China)
关键词:
桥梁工程 养护决策 性能退化模型 非洲秃鹫优化算法 综合目标值 状态逗留时间
Keywords:
bridge engineering maintenance decision making performance deterioration model African vulture optimization algorithm comprehensive objective value state sojourn time
分类号:
U466
文献标志码:
A
摘要:
基于性能退化模型和决策优化模型是桥梁管理系统(BMS)的两大重要核心功能,为在役桥梁的养护决策提供依据,提出一种基于非洲秃鹫优化算法优化马尔可夫链(AVOA-MC)和综合目标值的公路桥梁构件智能养护决策方法。首先针对少量桥梁历史检查数据的情况下,分别对桥梁状态逗留时间的指数分布和Weibull分布参数进行初步估算。然后利用非洲秃鹫优化算法(AVOA)分别对2种马尔可夫链(MC)分布参数取值分3个阶段进行调整,以减少技术状况退化模型的预测误差。最后,通过定义养护动作和时间,以养护费用最小、技术状况等级平均值最小为决策目标,利用性能退化模型输出的时变转移概率矩阵建立多目标决策模型。以山东省某高速公路上360个桥梁箱梁构件为例,按提出方法进行技术状况建模预测,并求解不同策略下养护维修方案。研究结果表明:在少量检查数据的情况下,采用基于AVOA-MC建立的性能退化模型,与未优化的连续时间马尔可夫链、基于Weibull分布的半马尔可夫链预测模型相比,预测误差为未优化模型的25%,且AVOA对2种MC分布参数取值优化效果优于粒子群算法和遗传算法; 提出方法可根据桥梁检查数据和退化模型,依据定义的养护时间策略,计算每个方案的各决策目标值,通过各决策目标值确定每个方案的综合目标值,选取综合目标值最小的方案为最优养护方案,该方案能够节省养护成本并使桥梁构件在寿命周期内保持较好的技术状况等级。
Abstract:
Performance deterioration models and decision optimization models are two crucial core functions of the bridge management system(BMS), which provides a basis for maintenance decisions-making of in-service bridges. In this study, an intelligent maintenance decision-making method for highway bridge members based on the African vulture optimization algorithm-optimized the Markov hain(AVOA-MC)and the comprehensive objective value was proposed. Firstly, in the case of insufficient historical inspection data of bridges members, the parameters of the exponential distribution and Weibull distribution of the bridge state sojourn time were preliminarily estimated respectively. Then, the AVOA was used to adjust the distributions parameter values of the two types of MCs in three stages respectively, so as to reduce the prediction error of the technical condition deterioration model. Finally, by defining maintenance actions and times, with the minimum maintenance cost and the minimum average value of technical condition grade as two decision-making objectives, a multi-objective decision-making model was established using the time-varying transition probability matrix output by the performance deterioration model. Taking 360 bridge box girder members of bridges on a certain highway in Shandong Province as an example, the technical condition modeling and prediction were carried out according to the above method, and the maintenance and repair schemes under different strategies were solved. The results show that, under insufficient inspection data, the prediction error of the performance deterioration model established based on AVOA-MC is 0.25% of those of the unoptimized continuous-time Markov chain and the semi-Markov chain prediction model based on Weibull distribution. Moreover, the optimization effect of AVOA on the distribution parameters of the two types of MCs is better than that of the particle swarm optimization(PSO)algorithm and the genetic algorithm(GA). The proposed method can calculate the values of two objectives for each scheme according to the bridge inspection data and the deterioration model, then the comprehensive objective value of each scheme was determined through of each decision-making objective value, and the scheme with the minimum comprehensive objective value was selected as the optimal maintenance scheme. This scheme can save maintenance costs and keep bridge components in a good technical condition grade throughout their service life.10 tabs, 9 figs, 32 refs.

参考文献/References:

[1] XUA G, GUOB F. Sustainability-oriented maintenance management of highway bridge networks based on Q-learning[J]. Sustainable Cities and Society, 2022, 81: 103855.
[2]卜德江,胡业荣,郑 晨,等.桥梁退化模型及维养决策研究和应用[J].公路,2024,69(1):364-373.
BO De-jiang, HU Ye-rong, ZHENG Chen, et al. Study and application of bridge degradation model and maintenance decision[J]. Highway, 2024, 69(1): 364-373.
[3]乔 朋,梁志强,徐 凯,等.基于机器学习的中小跨径桥梁技术状况评估[J].长安大学学报(自然科学版),2021,41(6):39-52.
QIAO Peng, LIANG Zhi-qiang, XU Kai, et al. Evaluation of technical condition of medium and small span bridge based on machine learning[J]. Journal of Chang'an University(Natural Science Edition), 2021, 41(6): 39-52.
[4]夏 烨,雷晓鸣,王 鹏,等.针对网级评估的区域桥梁退化建模与演绎应用[J].中南大学学报(自然科学版),2021,52(3):828-838.
XIA Ye, LEl Xiao-ming, WANG Peng, et al. Degradation modeling and application of regional bridges for network-level assessment[J]. Journal of Central South University(Science and Technology), 2021, 52(3): 828-838.
[5]LIU K, El-GOHARY N. Deep learning-based analytics of multisource heterogeneous bridge data for enhanced data-driven bridge deterioration prediction[J]. Journal of Computing in Civil Engineering, 2022, 36(5): 04022023.
[6]CALVERT G, NEVES L, ANDREWS J, et al. Multi-defect modelling of bridge deterioration using truncated inspection records[J]. Reliability Engineering & AMP, System Safety, 2020, 200: 106962.
[7]左 勤.基于多目标布谷鸟算法的空心板桥梁最优养护时机研究[D].重庆:重庆交通大学,2022.
ZUO Qin. Research on optimal maintenance timing of hollow slab bridges based on multi-objective cuckoo search algorithm[D]. Chongqing: Chongqing Jiaotong University, 2022.
[8]TRAN H, LOKUGE W, SETUNGE S, et al. Network deterioration prediction for reinforced concrete pipe and box culverts using Markov model: Case study[J]. Journal of Performance of Constructed Facilities, 2022, 36(6): 04022047.
[9]李 岩,张久鹏,何印章,等.基于粒子群优化-熵权无偏灰色马尔可夫模型的沥青道面性能预测[J].东南大学学报(自然科学版),2024,54(2):416-422.
LI Yan, ZHANG Jiu-peng, HE Yin-zhang, et al. Performance prediction of asphalt pavement based on PSO-entropy weighted unbiased grey Markov model[J]. Journal of Southeast University(Natural Science Edition), 2024, 54(2): 416-422.
[10]时笑鹏.中小跨径混凝土梁桥退化预测和维护策略研究[D].北京:北京交通大学,2018.
SHI Xiao-peng. The degradation prediction and maintenance strategy of medium & short span concrete girder bridges[D]. Beijing: Beijing Jiaotong University, 2018.
[11]ALSATTAR H A, ZAIDAN A A, ZAIDAN B B. Novel meta-heuristic bald eagle search optimization algorithm[J]. Artificial Intelligence Review, 2019, 53: 2237-2264.
[12]张 洪,左 勤,辛景舟,等.桥梁退化模型及养护时机研究综述[J].科学技术与工程,2022,22(8):2993-3001.
ZHANG Hong, ZUO Qin, XIN Jing-zhou, et al. Review of research on bridge degradation model and maintenance timing[J]. Science Technology and Engineering, 2022, 22(8): 2993-3001.
[13]KONG J S, FRANGOPOL D M. Evaluation of expected life-cycle maintenance cost of deteriorating structures[J]. Journal of Structural Engineering, 2003, 129(5): 682-691.
[14]LIU S, HUANG H, KUMALA N R D. Two-stage optimization model for life cycle maintenance scheduling of bridge infrastructure[J]. Applied Sciences-basel, 2020, 10(24): 8887.
[15]LIU Z, GUO T, CORREIA J, et al. Reliability-based maintenance strategy for gusset plate connections in steel bridges based on life-cost optimization[J]. Journal of Performance of Constructed Facilities, 2020, 34(5): 04020088.
[16]SHEN Z, LIU Y, LIU J, et al. A decision-making method for bridge network maintenance based on disease transmission and NSGA-Ⅱ[J]. Sustainability, 2023, 15(6): 5007.
[17]戴理朝,康 哲,陈 瑞,等.基于NSGA-Ⅲ的桥梁网络多目标维修决策优化研究[J]. 土木工程学报, 2023, 57(5): 41-52.
DAI Li-chao, KANG Zhe, CHEN Rui, et al. Study on multi-objective maintenance decision optimization for bridge networks based on NSGA-Ⅲ[J]. China Civil Engineering Journal, 2024, 57(5): 41-52.
[18]JTG/T H21—2011,公路桥梁技术状况评定标准[S].
JTG/T H21—2011, Standard for the assessment of highway bridge technology[S].
[19]FAGNER F, DIOGO R. Railway bridge management system based on visual inspections with semi-Markov continuous time process[J]. KSCE Journal of Civil Engineering, 2022, 27(1): 233-250.
[20]NOORTWIJK J, KALLEN M J. Statistical inference for Markov deterioration models of bridge conditions in the Netherlands[C]//CRUZ P J S, FRANGOPOL D M, NEVES L C C. Proceedings of the third international conference on bridge maintenance, safety and management. Oxfordshire: Taylor & Francis, 2006: 1-8.
[21]THOMAS O, SOBANJO J. Semi-Markov models for the deterioration of bridge elements[J]. Journal of Infrastructure Systems, 2016, 22(3): 04016010.
[22]FANG Y, SUN L. Developing a semi-Markov process model for bridge deterioration prediction in Shanghai[J]. Sustainability, 2019, 11(19): 5524-5524.
[23]SOBANJO J O. State transition probabilities in bridge deterioration based on Weibull sojourn times[J]. Structure and Infrastructure Engineering, 2011, 7(10): 747-764.
[24]MANAFPOUR A, GULER I, RADLINSKA A, et al. Stochastic analysis and time-based modeling of concrete bridge deck deterioration[J]. Journal of Bridge Engineering, 2018, 23(9): 04018066.
[25]WU D, YUAN C, KUMFER W, et al. A life-cycle optimization model using semi-Markov process for highway bridge maintenance[J]. Applied Mathematical Modelling, 2017, 43: 45-60.
[26]冯海林,薄立军.随机过程——计算与应用[M].西安:西安科技大学出版社,2013.
FENG Hai-lin, BAO Li-jun. Stochastic processes: Computation and applications[M]. Xi'an: Xi'an University of Science and Technology Press, 2013.
[27]曹慧荣.全最小二乘法在威布尔分布参数估计中的应用[J].高师理科学刊,2023,43(2):6-10.
CAO Hui-rong. Application of total least squares in parameters estimation of Weibull distribution[J]. Journal of Science of Teachers' College and University, 2023, 43(2): 6-10.
[28]LEE S, PARK W, OK S, et al. Preference-based maintenance planning for deteriorating bridges under multi-objective optimization framework[J]. Structure and Infrastructure Engineering, 2011, 7(7/8): 633-644.
[29]LIU M, FRANGOPOL D M. Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost[J]. Journal of Structural Engineering, 2005, 131(5): 833-842.
[30]LEI X, DONG Y, FRANGOPOL D M. Sustainable life-cycle maintenance policymaking for network-level deteriorating bridges with a convolutional autoencoder-structured reinforcement learning agent[J]. Journal of Bridge Engineering, 2023, 28(9): 04023063.
[31]中国人民共和国交通运输部.“十四五”公路养护管理发展纲要[EB/OL].(2022-04-26). https://xxgk.mot.gov.cn/2020/jigou/glj/202204/t20220426_3652905.html.
Ministry of Transport of the People's Republic of China. The 14th Five-Year Plan for highway maintenance management development[EB/OL].(2022-04-26). https://xxgk.mot.gov.cn/2020/jigou/glj/202204/t20220426_3652905.html.
[32]JTG/T 5612—2020,公路桥梁养护工程预算定额[S].
JTG 5612—2020, Budget quota for highway bridge maintenance engineering[S].

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):44.

备注/Memo

备注/Memo:
收稿日期:2025-05-05
基金项目:山东省交通运输厅科技项目(2022B61)
作者简介:辛公锋(1979-),男,山东日照人,研究员,工学博士,E-mail:gfxin@163.com。
通信作者:梁 鹏(1977-),男,江西高安人,教授,博士研究生导师,工学博士,E-mail:lpchdlp@163.com。
更新日期/Last Update: 2025-12-20