[1]张泽郴,闫磊,任伟.基于改进粒子群优化算法的先张折线梁参数优化[J].长安大学学报(自然科学版),2025,45(6):143-153.
 ZHANG Ze-chen,YAN Lei,REN Wei.Parameter optimization of pre-tensioned broken-line beam based on improved particle swarm optimization algorithm[J].Journal of Chang’an University (Natural Science Edition),2025,45(6):143-153.
点击复制

基于改进粒子群优化算法的先张折线梁参数优化()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年6期
页码:
143-153
栏目:
桥梁智能运维与防灾减灾
出版日期:
2025-11-30

文章信息/Info

Title:
Parameter optimization of pre-tensioned broken-line beam based on improved particle swarm optimization algorithm
文章编号:
1671-8879(2025)06-0143-11
作者:
张泽郴闫磊任伟
(长安大学 公路学院,陕西 西安 710064)
Author(s):
ZHANG Ze-chen YAN Lei REN Wei
(School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China)
关键词:
桥梁工程 改进粒子群优化算法 粒子能力分级 反对粒子 设计参数优化
Keywords:
bridge engineering improved particle swarm optimization algorithm particle capability grading opposition particle design parameter optimization
分类号:
U448.218
文献标志码:
A
摘要:
为解决桥梁设计中多变量、多约束条件下最优设计参数的取值问题,提出了改进粒子群优化(IPSO)算法,优化了先张折线束工字组合梁的设计参数; 基于生态位分化理论建立了粒子能力分级机制,依据第十人理论提出了反对粒子策略,将二者与PSO算法进行融合,构建了IPSO算法; 利用4种基准测试函数对该算法进行了独立试验,验证了IPSO算法的寻优能力与收敛效率; 利用IPSO算法优化了一片35 m先张折线束工字组合梁的设计参数,并通过定值与可靠度校验证明了该算法的可行性。分析结果表明:单峰函数测试中,IPSO算法的平均收敛率较PSO算法提高13.4%以上,且迭代结果平均值至少降低99.4%,证明粒子能力分级机制可显著提升算法的收敛效率与局部寻优能力; 多峰函数测试中,IPSO算法的平均收敛率较PSO算法提高15.0%以上,部分粒子的反向搜索计算使得迭代结果平均值至少降低76.2%,标准差至少降低73.9%,说明迭代结果更逼近于目标值且收敛效果更优,故反对粒子策略可显著提升算法的全局寻优能力; 优化后先张折线束工字组合梁桥面板高度可减少25.0%,梁高可减少9.0%,预应力钢束可减少5.6%,单片梁的材料成本可降低9.1%,且设计参数仍满足规范要求,说明提出的IPSO算法可信、可行。研究成果可为同类结构的设计优化提供参考。
Abstract:
To address the problem of optimal design parameter selection under multi-variable and multi-constraint conditions in bridge design, an improved particle swarm optimization(IPSO)algorithm was proposed to optimize the design parameters of a pre-tensioned broken-line I-shape composite beam. A particle capability grading mechanism was established based on the ecological niche differentiation theory. According to the tenth man rule, an opposition particle strategy was proposed. The two strategies were integrated with the PSO algorithm to construct the IPSO algorithm. Four benchmark test functions were employed to conduct independent tests to verify the optimization ability and convergence efficiency of the IPSO algorithm. The IPSO algorithm was then used to optimize the design parameters of a 35 m pre-tensioned broken-line I-shape composite beam, and its feasibility was validated through fixed-value and reliability verification. The analysis results show that in the unimodal function test, the average convergence rate of IPSO algorithm improves by more than 13.4% compared with the PSO algorithm, and the average value of iteration results reduces by at least 99.4%. This proves that the particle capability grading mechanism can significantly enhance the convergence efficiency and local optimization ability of the algorithm. In the multimodal function test, the average convergence rate of IPSO algorithm improves by more than 15.0% compared with the PSO algorithm, the reverse search computation of some particles makes the average value of iteration results decrease by at least 76.2% and the standard deviation decrease by at least 73.9%, indicating that the iteration results are closer to the target values and the convergence is better. Therefore, the opposition particle strategy can significantly enhance the global optimization ability of the algorithm. After optimization, the deck height of the pre-tensioned broken-line I-shape composite beam reduces by 25.0%, the beam height reduces by 9.0%, the prestressed tendons reduce by 5.6%, and the material cost per beam reduces by 9.1%, while all design parameters still meet the specification requirements. This confirms that the proposed IPSO algorithm is reliable and feasible. The research results can provide a reference for the design optimization of similar structures.9 tabs, 8 figs, 33 refs.

参考文献/References:

[1] JAHJOUH M, ERHAN S. Optimization of prestressed concrete bridge girder section using a modified harmony search algorithm[J]. Structures, 2022, 46: 625-636.
[2]MARTÍNEZ-MUÑOZ D, GARCÍA J, MARTÍ J V, et al. Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges[J]. Engineering Structures, 2022, 266: 114607.

[3]KORUS K, SALAMAK M, JASIN 'SKI M. Optimization of geometric parameters of arch bridges using visual programming FEM components and genetic algorithm[J]. Engineering Structures, 2021, 241: 112465.
[4]FAKHERMAND S M, DERAKHSHANI A. Design optimization of soil-metal composite arch bridges: Recent swarm intelligence applications[J]. Iranian Journal of Science and Technology Transactions of Civil Engineering, 2023, 47(1): 373-387.
[5]GUO J J, GUAN Z G. Optimization of the cable forces of completed cable-stayed bridges with differential evolution method[J]. Structures, 2023, 47: 1416-1427.
[6]LAMESGIN A, GOLLA A. Structural optimizations of extradosed cable-stayed bridge by using genetic algorithm[J]. Ce/Papers: Proceedings in Civil Engineering, 2023, 6(5): 235-236.
[7]李光玲,高 欢,韩万水,等.基于KPSO算法悬索桥纵向约束体系减振优化[J].交通运输工程学报,2025,25(2):270-282.
LI Guang-ling, GAO Huan, HAN Wan-shui, et al. Optimization on vibration reduction of longitudinal constraint system in suspension bridges based on KPSO algorithm[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 270-282.
[8]周红利,周广东,刘凯凯,等.基于PSO-GRNN的大跨桥梁有限元模型修正方法[J].东南大学学报(自然科学版),2024,54(6):1489-1495.
ZHOU Hong-li, ZHOU Guang-dong, LIU Kai-kai, et al. Finite element model updating method for long span bridges based on PSO-GRNN[J]. Journal of Southeast University(Natural Science Edition), 2024, 54(6): 1489-1495.
[9]HAJI AGHA MOHAMMAD ZARBAF S E, NOROUZI M, ALLENANG R J, et al. Stay cable tension estimation of cable-stayed bridges using genetic algorithm and particle swarm optimization[J]. Journal of Bridge Engineering, 2017, 22(10): 05017008.
[10]TRENTINI E V W, PARSEKIAN G A, BITTENCOURT T N. Multiobjective optimization of bridge and viaduct design: Comparative study of metaheuristics and parameter calibration[J]. Engineering Structures, 2024, 312: 118252.
[11]TRAN-NGOC H, KHATIR S, DE ROECK G, et al. Model updating for nam O bridge using particle swarm optimization algorithm and genetic algorithm[J]. Sensors, 2018, 18(12): 4131.
[12]SHI Y, EBERHART R. A modified particle swarm optimizer[C]//IEEE. 1998 IEEE International Conference on Evolutionary Computation Proceedings. New York: IEEE, 1998: 69-73.
[13]EBERHART R C, SHI Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]//IEEE. Proceedings of the 2000 Congress on Evolutionary Computation. New York: IEEE, 2000: 84-88.
[14]SHI Y, EBERHART R C. Parameter selection in particle swarm optimization[M]//PORTO V W, SARAVANAN N, WAAGEN D, et al. Evolutionary Programming Ⅶ. Berlin: Springer, 1998: 591-600.
[15]YU C J, LI Y S, CHEN Q, et al. An advanced particle swarm optimization algorithm and its application to search flutter critical velocity of bridges[J]. Advances in Structural Engineering, 2022, 25(11): 2271-2283.
[16]LI B A, LI Y S, LIU X, et al. Section optimization design of UHPC beam bridges based on improved particle swarm optimization[J]. Frontiers in Materials, 2023, 10: 1276118.
[17]XIONG H Z, YANG X, HE Y N, et al. Optimization of cable-stayed force for asymmetric single tower cable-stayed bridge formation based on improved particle swarm algorithm[J]. International Journal of Structural Integrity, 2024, 15(5): 873-901.
[18]GOU J, LEI Y X, GUO W P, et al. A novel improved particle swarm optimization algorithm based on individual difference evolution[J]. Applied Soft Computing, 2017, 57: 468-481.
[19]ZHANG Q B, WANG P, CHEN Z H. An improved particle filter for mobile robot localization based on particle swarm optimization[J]. Expert Systems with Applications, 2019, 135: 181-193.
[20]DAS P K, JENA P K. Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary operators[J]. Applied Soft Computing, 2020, 92: 106312.
[21]ZAMAN H R R, GHAREHCHOPOGH F S. An improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problems[J]. Engineering with Computers, 2022, 38(4): 2797-2831.
[22]LI D G, YE Z L, LU P Z, et al. Reliability intelligence analysis of concrete arch bridge based on Kriging model and PSOSA hybrid algorithm[J]. Artificial Intelligence Review, 2023, 56(2): 2667-2685.
[23]LU P Z, XU Z J, HONG T, et al. Reliability evaluation of concrete-filled steel tube arch bridge based on DBN-PSOSA hybrid algorithm[J]. Structural Concrete, 2021, 22(4): 2309-2321.
[24]HAMZAH M K, HEJAZI F, AYYASH N. Optimization of the multi-level spring restrainer for bridges by hybrid particle swarm and gravitational search algorithm[J]. International Journal of Steel Structures, 2023, 23(4): 901-913.
[25]CHEN Z J, CAO H Y, YE K, et al. Improved particle swarm optimization-based form-finding method for suspension bridge installation analysis[J]. Journal of Computing in Civil Engineering, 2015, 29(3): 04014047.
[26]许 莉,李煜民,丁自豪,等.采用改进多目标粒子群算法的斜拉桥阻尼器参数优化[J].振动工程学报,2024,37(6):1006-1014.
XU Li, LI Yu-min, DING Zi-hao, et al. Parameter optimization of viscous damper for cable-stayed bridge using improved multi-objective particle swarm algorithm[J]. Journal of Vibration Engineering, 2024, 37(6): 1006-1014.
[27]EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//IEEE. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. New York: IEEE, 1995: 39-43.
[28]CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.
[29]陈 磊,米湘成,马克平.生态位分化与森林群落物种多样性维持研究展望[J].生命科学,2014,26(2):112-117.
CHEN Lei, MI Xiang-cheng, MA Ke-ping, et al. Niche differentiation and its consequence on biodiversity maintenance in forest communities[J]. Chinese Bulletin of Life Sciences, 2014, 26(2): 112-117.
[30]SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem definitions and evaluation criteria for the CEC 2005 Special Session on Real-Parameter Optimization[R]. Singapore: Nanyang Technological University, 2005.
[31]HE J, LIN G. Average convergence rate of evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(2): 316-321.
[32]LIANG J J, QU B Y, SUGANTHAN P N, et al. Problem definitions and evaluation criteria for the CEC 2013 Special Session on Real-Parameter Optimization[R]. Zhengzhou: Zhengzhou University, 2013.
[33]李付俊.先张折线束工字组合梁正常使用性能可靠度评估[D].西安:长安大学,2022.
LI Fu-jun. Reliability evaluation of pretensioned broken beam I-beam in normal service limit state[D]. Xi'an: Chang'an University, 2022.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):44.

备注/Memo

备注/Memo:
收稿日期:2025-05-25
基金项目:国家重点研发计划项目(2024YFB2605004)
作者简介:张泽郴(1996-),男,山西运城人,E-mail:237319816@qq.com。
通信作者:闫 磊(1979-),男,山西运城人,副教授,工学博士,E-mail:yanlei@chd.edu.cn。
更新日期/Last Update: 2025-12-20