[1]孙洪滨,冯利波,师丞鸿,等.考虑吊索力影响的悬索桥销接式索夹抗滑性能研究[J].长安大学学报(自然科学版),2025,45(6):135-142.
 SUN Hong-bin,FENG Li-bo,SHI Cheng-hong,et al.Research on anti-sliding performance of pin-connected cable clamps of suspension bridges considering influence of suspender forces[J].Journal of Chang’an University (Natural Science Edition),2025,45(6):135-142.
点击复制

考虑吊索力影响的悬索桥销接式索夹抗滑性能研究()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年6期
页码:
135-142
栏目:
桥梁智能运维与防灾减灾
出版日期:
2025-11-30

文章信息/Info

Title:
Research on anti-sliding performance of pin-connected cable clamps of suspension bridges considering influence of suspender forces
文章编号:
1671-8879(2025)06-0135-08
作者:
孙洪滨12冯利波3师丞鸿4张鹏飞5许翔4章伟5邸昊3陈朋5
(1. 河海大学 土木与交通学院,江苏 南京 210098; 2. 江苏扬子江高速通道管理有限公司,江苏 南京 210046; 3. 中国铁路设计集团有限公司,天津 300308; 4. 东南大学 交通学院,江苏 南京 210096; 5. 中交公路规划设计院有限公司,北京 100010)
Author(s):
SUN Hong-bin12 FENG Li-bo3 SHI Cheng-hong4 ZHANG Peng-fei5 XU Xiang4ZHANG Wei5 DI Hao3 CHEN Peng5
(1. School of Civil and Transportation, Hohai University, Nanjing 210098, Jiangsu, China; 2. Jiangsu Yangtze River Highway Passage Management Co., Ltd., Nanjing 210046, Jiangsu, China; 3. China Railway Design Co., Ltd., Tianjin 300308, China; 4. School of Transportation, Southeast University,Nanjing 210096, Jiangsu, China; 5. CCCC Highway Consultants Co., Ltd., Beijing 100010, China)
关键词:
桥梁工程 悬索桥 销接式索夹 抗滑性能 吊索力 螺杆预紧力
Keywords:
bridge engineering suspension bridge pin-connected cable clamp anti-sliding performance suspender force bolt preload
分类号:
U411
文献标志码:
A
摘要:
为了系统掌握悬索桥销接式索夹抗滑性能的变化规律,采用理论推导和数值模拟方法研究索力等因素对索夹抗滑性能的影响。首先,基于库伦摩擦定律推导仅考虑螺杆预紧力的销接式索夹抗滑力计算公式。在此基础上,推导考虑吊索力影响的销接式索夹抗滑力计算公式。随后,以某悬索桥靠近索塔的SJ1索夹为研究对象,建立索夹局部精细化有限元模型。其中,主缆以三向异性材料进行等效模拟,一端固结一端自由,缆、索夹和螺杆的接触设置为面-面硬接触。参考索夹施工步骤,有限元模型计算分为4个加载步进行计算。模拟得到考虑吊索力影响的上、下半索夹抗滑力,并将模拟结果与理论推导结果进行比较分析。研究结果表明:索夹抗滑力的理论计算与数值模拟结果的相对误差为2.0%左右,验证了理论推导公式的可靠性; 基于数值模拟和理论推导结果可知,随着吊索力增加,上半索夹抗滑力逐渐增大,下半索夹抗滑力逐渐减小,索夹总抗滑力逐渐减小; 通过理论推导可知,索夹抗滑承载力与螺杆预紧力呈线性正相关,与环向摩擦因数呈负相关; 通过数值模拟验证了理论推导的考虑吊索力影响的悬索桥销接式索夹抗滑力理论计算公式的可靠性,系统揭示了销接式索夹抗滑性能随索力等因素的变化规律。
Abstract:
To systematically investigate the variation patterns of the anti-sliding performance of pin-connected cable clamps for suspension bridges, this study employed theoretical derivation and numerical simulation methods to examine the influence of the factors such as suspender forces on the anti-sliding behavior of cable clamps. First, based on the Coulomb friction law, the calculation formula of the anti-sliding force of pin-connected cable clamps considering only bolt preloads was derived. On this basis, the calculation formula of the anti-sliding force of pin-connected cable clamps considering the influence of suspender forces was further derived. Subsequently, taking the SJ1 cable clamp near the pylon of a suspension bridge as the research object, a localized refined finite element model of the cable clamp was established. In this model, the main cable was equivalently simulated as a transversely isotropic material, with one end fixed and the other free. The contact between the cable, cable clamp, and bolts was defined as surface-to-surface hard contact. Referring to the construction steps of the cable clamp, the finite element model calculation was divided into four loading steps. The anti-sliding forces of the upper and lower halves of the cable clamp under the influence of suspender forces were simulated, and the simulation results were compared and analyzed with the theoretical derivation results. The research results indicated that the relative error between the theoretical calculation and numerical simulation of the cable clamp anti-sliding force was approximately 2.0%, verifying the reliability of the theoretically derived formulas. Based on the numerical simulation and theoretical derivation results, it is found that as the suspender force increases, the anti-sliding force of the upper half of the cable clamp gradually increases, while that of the lower half gradually decreases, leading to a gradual reduction in the total anti-sliding force of the cable clamp. Theoretical derivation further reveals that the anti-sliding capacity of the cable clamp is positively linearly correlated with the bolt preload and negatively correlated with the coefficient of circumferential friction. This study derives theoretical calculation formulas of the anti-sliding force of pin-connected cable clamps for suspension bridges under the influence of suspender forces, verifies the reliability of the theoretical derivation through numerical simulation, and systematically reveals the variation patterns of the anti-sliding performance of pin-connected cable clamps with the factors such as suspender forces.7 figs, 16 refs.

参考文献/References:

[1] WANG D, YE J, WANG B, et al. Review on the service safety assessment of main cable of long span multi-tower suspension bridge[J]. Applied Sciences, 2021, 11(13): 5920.
[2]罗改霞.某悬索桥索夹滑移原因分析与处理对策[J].交通科技,2016(3):73-75.
LUO Gai-xia. Cable clamp slipping analysis and treatments[J]. Transportation Science & Technology, 2016(3): 73-75.
[3]黎志忠,蒋劲松.悬索桥上、下对合型索夹结构分析研究[J].桥梁建设,2013,43(3):60-65.
LI Zhi-zhong, JIANG Jin-song. Analysis and study of cable band structure of upper and lower halves type for suspension bridge[J]. Bridge Construction, 2013, 43(3): 60-65.
[4]周 敉,李志烜,冯鹏飞.超大跨悬索桥的长周期设计反应谱研究[J].交通运输工程学报,2025,25(3):144-159.
ZHOU Mi, LI Zhi-xuan, FENG Peng-fei. Long-period design response spectrum study of ultra-long-span suspension bridges[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 144-159.
[5]JTG/T D65-05—2015,公路悬索桥设计规范[S].
JTG/T D65-05—2015,Specifications for design of highway suspension bridge[S].
[6]沈锐利,何 恺,苗如松.基于多尺度模型的销接式索夹极限抗滑摩阻力分析[J].桥梁建设,2018,48(5):16-20.
SHEN Rui-li, HE Kai, MIAO Ru-song. Analysis of ultimate sliding resistance friction of pin connected cable clamp based on multi-scale model[J]. Bridge Construction, 2018, 48(5): 16-20.
[7]厉勇辉,彭成明,彭志辉,等.温州瓯江北口大桥施工期索夹抗滑移控制[J].桥梁建设,2024,54(2):131-138.
LI Yong-hui, PENG Cheng-ming, PENG Zhi-hui, et al. Cable clamp slip control for Oujiang River north estuary bridge in Wenzhou during construction[J]. Bridge Construction, 2024, 54(2): 131-138.
[8]郭 瑞,苗如松,陈 龙,等.AS法架设主缆悬索桥索夹抗滑性能试验研究[J].桥梁建设,2022,52(3):77-83.
GUO Rui, MIAO Ru-song, CHEN Long, et al. Experimental study on slip resistance of cable clamps of main cable erected by AS method in suspension bridge[J]. Bridge Construction, 2022, 52(3): 77-83.
[9]CHEN Y, ZHENG K, CHENG Z, et al. Competing mechanism between vertical stiffness and anti-slip safety in double-cable multi-span suspension bridges[J]. Structure and Infrastructure Engineering, 2024, 20(4): 485-497.
[10]MIAO R, SHEN R, WANG L, et al. Theoretical and numerical studies of the slip resistance of main cable clamp composed of an upper and a lower part[J]. Advances in Structural Engineering, 2021, 24(4): 691-705.
[11]ZHANG Q, HAN S, BAO Y, et al. Frictional resistance between main cable and saddle for suspension bridges Ⅰ: Friction characteristic of single strand[J]. Journal of Bridge Engineering, 2020, 25(8): 04020042.
[12]POPOVA E, POPOV V L. The research works of coulomb and amontons and generalized laws of friction[J]. Friction, 2015, 3: 183-190.
[13]BOWDEN F P, TABOR D. The friction and lubrication of solids[M]. Oxford: Oxford University Press, 2001.
[14]唐 冕,车天鑫,宋旭明,等.基于蠕变理论的自锚式悬索桥索夹预紧力研究[J].华南理工大学学报(自然科学版),2022,50(1):59-68.
TANG Mian, CHE Tian-xin, SONG Xu-ming, et al. Study on pre-tightening force of cable clamp of self-anchored suspension bridge based on creep theory[J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(1): 59-68.
[15]MU F, JIA L, ZHOU Y, et al. Research on prediction model for preload loss in cable clamp bolts of suspension bridges[J]. Journal of Constructional Steel Research, 2025, 227: 109403.
[16]周勇军,贾利强,杨 帆,等.考虑主缆镀锌层蠕变的索夹螺杆紧固力损失预测[J].中国公路学报,2024,37(7):157-167.
ZHOU Yong-jun, JIA Li-qiang, YANG Fan, et al. Research on preload loss prediction of clamp bolt considering cable creep of galvanized layer[J]. China Journal of Highway and Transport, 2024, 37(7): 157-167.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):44.
[11]梅葵花,费增乾,孙胜江,等.超大跨径CFRP缆索悬索桥静力性能[J].长安大学学报(自然科学版),2013,33(03):42.
 MEI Kui-hua/sup>,FEI Zeng-qian,SUN Sheng-jiang,et al.Static characteristics of suspension bridge with CFRP cables[J].Journal of Chang’an University (Natural Science Edition),2013,33(6):42.
[12]周 敉,徐梓涛.大跨钢桁梁悬索桥合理抗震约束体系[J].长安大学学报(自然科学版),2022,42(6):90.[doi:10.19721/j.cnki.1671-8879.2022.06.009]
 ZHOU Mi,XU Zi-tao.Reasonable seismic restraint system of long-span steel truss girder suspension bridge[J].Journal of Chang’an University (Natural Science Edition),2022,42(6):90.[doi:10.19721/j.cnki.1671-8879.2022.06.009]
[13]朱伟华,刘国坤,颜东煌,等.基于刚性支承连续梁法的悬索桥成桥状态解析算法[J].长安大学学报(自然科学版),2024,44(1):58.[doi:10.19721/j.cnki.1671-8879.2024.01.006]
 ZHU Wei-hua,LIU Guo-kun,YAN Dong-huang,et al.Analytical algorithm for completed state of suspension bridge based on rigid supported continuous beam method[J].Journal of Chang’an University (Natural Science Edition),2024,44(6):58.[doi:10.19721/j.cnki.1671-8879.2024.01.006]

备注/Memo

备注/Memo:
收稿日期:2025-05-05
基金项目:国家自然科学基金项目(52308150)
作者简介:孙洪滨(1986-),男,山东聊城人,工学博士研究生,E-mail:838488028@qq.com。
通信作者:许 翔(1989-),男,江苏丹阳人,副教授,博士研究生导师,工学博士,E-mail:xxuseu@126.com。
更新日期/Last Update: 2025-12-20