[1]刘小光,朱伟庆,余琪,等.双椭球热源模型形状参数确定方法[J].长安大学学报(自然科学版),2025,45(6):124-134.
 LIU Xiao-guang,ZHU Wei-qing,YU Qi,et al.Determining method for shape parameters of dual-ellipsoidal heat source model[J].Journal of Chang’an University (Natural Science Edition),2025,45(6):124-134.
点击复制

双椭球热源模型形状参数确定方法()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年6期
页码:
124-134
栏目:
桥梁智能运维与防灾减灾
出版日期:
2025-11-30

文章信息/Info

Title:
Determining method for shape parameters of dual-ellipsoidal heat source model
文章编号:
1671-8879(2025)06-0124-11
作者:
刘小光12朱伟庆1余琪1范永辉2周波1王浩2
(1. 长安大学 公路学院,陕西 西安 710064; 2. 陕西建工机械施工集团有限公司,陕西 西安 710032)
Author(s):
LIU Xiao-guang12 ZHU Wei-qing1 YU Qi1 FAN Yong-hui2 ZHOU Bo1 WANG Hao2
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. SCEGC Mechanized Construction Group Co., Ltd., Xi'an 710032, Shaanxi, China)
关键词:
桥梁工程 双椭球热源 形状参数 焊接温度场 熔池尺寸
Keywords:
bridge engineering dual-ellipsoidal heat source shape parameter welding temperature field molten pool dimension
分类号:
U445
文献标志码:
A
摘要:
为准确确定钢结构焊接温度场,并精准预测焊接过程中的焊接应力与变形,提出了双椭球热源模型形状参数确定与预测方法; 进行了钢桁架节点的T型接头焊接试验,获得了熔池尺寸和测点温度场,并建立了仿真模型,探究了热源形状参数对不同距离测点温度的影响,确定了热源热效率的取值; 以测点峰值温度与熔池尺寸建立目标函数,根据热源对不同距离测点的影响定义了误差权重系数,确定了热源形状参数约束条件,并构建了热源参数多目标确定数学模型; 在约束条件内设计了模拟试验,根据目标函数计算出试验和模拟结果,以热源形状参数为自变量,目标函数计算结果为因变量,拟合了误差-热源尺寸函数,并根据最小因变量确定了最优热源形状参数,在此基础上拟合了热源形状参数预测回归曲线。研究结果表明:热源热效率不变时,测点距离热源越近,测点温度误差越大,热源尺寸对温度的影响越小; 热源对不同距离测点的影响越大,误差权重系数越大; 根据最优热源形状参数仿真得到的温度峰值和熔池尺寸与实测值的最大误差分别为2.38%与5.62%,热源形状参数预测值与模拟试验设计值的最大误差为6.92%。由此可见,提出的双椭球热源模型形状参数确定方法具有较高的精度,同时可大幅简化形状参数求解过程。
Abstract:
To accurately determine the welding temperature field of steel structures and precisely predict the welding stress and deformation during welding process, a determining and predicting method for shape parameters of dual-ellipsoidal heat source model was proposed. The T-joint welding test of steel truss joints was conducted to obtain the molten pool dimensions and measuring point temperature fields, and the simulation model was established. The influences of heat source shape parameters on temperature measuring points at different distances were investigated, and the value of heat source thermal efficiency was determined. Objective functions were established based on the peak temperature of measuring points and molten pool dimensions. Error weight coefficients were defined according to the influence of heat source on measuring points at different distances, the constraint conditions of heat source shape parameters were set, and a multi-objective determination mathematical model for heat source parameters was constructed. Simulation tests were designed within the constraint conditions. The test and simulation results were calculated according to the objective functions. The heat source shape parameters were taken as independent variables, and the objective function calculation results were taken as dependent variables to fit the error-heat source dimension function. The optimal heat source shape parameters were determined when the dependent variable was minimal. On this basis, prediction regression curves for heat source shape parameters were fitted. The research results show that when the heat source thermal efficiency remains constant, the closer a measurement point is to the heat source, the larger the temperature error of the measuring point, and the smaller the influence of heat source dimension on temperature. The greater the influence of heat source on measurement points at different distances, the greater the error weight coefficient. The maximum errors between the simulated peak temperature and molten pool dimensions according to the optimal heat source shape parameters and the measured values are 2.38% and 5.62%, respectively. The maximum error between the predicted heat source shape parameters and the simulated test design values is 6.92%. It can be seen that the proposed determining method for shape parameters of dual-ellipsoidal heat source model has a high accuracy and can greatly simplify the shape parameter solving process.6 tabs, 14 figs, 31 refs.

参考文献/References:

[1] 郑凯锋,冯霄暘,衡俊霖,等.钢桥2020年度研究进展[J].土木与环境工程学报(中英文),2021,43(增1):53-69.
ZHENG Kai-feng, FENG Xiao-yang, HENG Jun-lin, et al. State-of-the-art review of steel bridges in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 53-69.
[2]高占远,郭彦林.大型或复杂钢结构焊接残余应力与变形研究进展[J].建筑科学与工程学报,2016,33(5):108-119.
GAO Zhan-yuan, GUO Yan-lin. Research progress on welding residual stress and deformation in large or complex steel structure[J]. Journal of Architecture and Civil Engineering, 2016, 33(5): 108-119.
[3]骆文泽,成慧梅,刘红艳,等.高强钢Q960E对接接头残余应力与焊接变形的数值模拟[J].中国机械工程,2023,34(17):2095-2105,2141.
LUO Wen-ze, CHENG Hui-mei, LIU Hong-yan, et al. Numerical simulation of residual stress and welding deformation in high-strength steel Q960E butt-welded joints[J]. China Mechanical Engineering, 2023, 34(17): 2095-2105, 2141.
[4]谷京晨,童莉葛,黎 磊,等.焊接数值模拟中热源的选用原则[J].材料导报,2014,28(1):143-146.
GU Jing-chen, TONG Li-ge, LI Lei, et al. Selection criteria of heat source model on the welding numerical simulation[J]. Materials Reports, 2014, 28(1): 143-146.
[5]李 岩,刘 琪,李艳彪,等.薄壁GH3536尾喷管组焊变形控制工艺优化仿真[J].稀有金属材料与工程,2023,52(8):2775-2782.
LI Yan, LIU Qi, LI Yan-biao, et al. Optimal simulation of welding deformation control process for thin-wall GH3536 tail nozzle[J]. Rare Metal Materials and Engineering, 2023, 52(8): 2775-2782.
[6]王 慧,兰 箭,华 林.基于组合热源模型的激光深熔焊数值模拟[J].武汉理工大学学报,2014,36(11):39-45.
WANG Hui, LAN Jian, HUA Lin. Numerical simulation of laser deep-penetration welding based on the combined heat source model[J]. Journal of Wuhan University of Technology, 2014, 36(11): 39-45.
[7]张红卫,桂良进,范子杰.焊接热源参数优化方法研究及验证[J].清华大学学报(自然科学版),2022,62(2):367-373.
ZHANG Hong-wei, GUI Liang-jin, FAN Zi-jie. Research and verification of welding heat source parameter optimization model[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 367-373.
[8]DHINGRA A K, MURPHY C L. Numerical simulation of welding-induced distortion in thin-walled structures[J]. Science and Technology of Welding and Joining, 2005, 10(5): 528-536.
[9]FICQUET X, SMITH D J, TRUMAN C E, et al. Measurement and prediction of residual stress in a bead-on-plate weld benchmark specimen[J]. International Journal of Pressure Vessels and Piping, 2009, 86(1): 20-30.
[10]顾 颖,李亚东,强 斌,等.基于ANSYS优化设计求解双椭球热源模型参数[J].焊接学报,2016,37(11):15-18,129.
GU Ying, LI Ya-dong, QIANG Bin, et al. Parameter optimization of double ellipsoidal heat source model by ANSYS[J]. Transactions of the China Welding Institution, 2016, 37(11): 15-18, 129.
[11]李瑞英,赵 明,吴春梅.基于SYSWELD的双椭球热源模型参数的确定[J].焊接学报,2014,35(10):93-96,117-118.
LI Rui-ying, ZHAO Ming, WU Chun-mei. Determination of shape parameters of double ellipsoid heat source model in numerical simulation based on SYSWELD software[J]. Transactions of the China Welding Institution, 2014, 35(10): 93-96, 117-118.
[12]杨 婕,张志莲,肖云峰,等.基于Sysweld的焊接接头热源模型二次开发[J].焊接技术,2019,48(7):19-22,2.
YANG Jie, ZHANG Zhi-lian, XIAO Yun-feng, et al. Development of heat source model of welded joint based on Sysweld[J]. Welding Technology, 2019, 48(7): 19-22, 2.
[13]CHUJUTALLI J H, LOURENÇO M I, ESTEFEN S F. Experimental-based methodology for the double ellipsoidal heat source parameters in welding simulations[J]. Marine Systems and Ocean Technology, 2020, 15: 110-123.
[14]BJELIC ' M B, RADIC ˇEVIC ' B S, KOVANDA K, et al. Multi-objective calibration of the double-ellipsoid heat source model for GMAW process simulation[J]. Thermal Science, 2022, 26(3): 2081-2092.
[15]李培麟,陆 皓.双椭球热源参数的敏感性分析及预测[J].焊接学报,2011,32(11):89-91,95,117-118.
LI Pei-lin, LU Hao. Sensitivity analysis and prediction of double ellipsoid heat source parameters[J]. Transactions of the China Welding Institution, 2011, 32(11): 89-91, 95, 117-118.
[16]李娅娜,刘嘉浩.基于焊接质量双椭球热源形状参数的简化模型[J].焊接,2021(8):7-11,62.
LI Ya-na, LIU Jia-hao. Simplified model of heat source shape parameters of double ellipsoid based on welding quality[J]. Welding and Joining, 2021(8): 7-11, 62.
[17]钱闪光,姚 激.角接热源模型校核研究[J].热加工工艺,2017,46(1):195-198,202.
QIAN Shan-guang, YAO Ji. Study on checking of angle joint heat source model[J]. Hot Working Technology, 2017, 46(1): 195-198, 202.
[18]武少杰,曲皇屹,程方杰.基于变速GTAW焊接温度场解析模型的熔深预测研究[J].天津大学学报(自然科学与工程技术版),2024,57(1):64-72.
WU Shao-jie, QU Huang-yi, CHENG Fang-jie. Research on penetration depth prediction based on an analytical model of variable speed GTAW welding temperature field[J]. Journal of Tianjin University(Science and Technology), 2024, 57(1): 64-72.
[19]JIA X L, XU J, LIU Z H, et al. A new method to estimate heat source parameters in gas metal arc welding simulation process[J]. Fusion Engineering and Design, 2014, 89(1): 40-48.
[20]TAFARROJ M M, KOLAHAN F. A comparative study on the performance of artificial neural networks and regression models in modeling the heat source model parameters in GTA welding[J]. Fusion Engineering and Design, 2018, 131: 111-118.
[21]JIAO H H, JIN H. An inverse method for determining geometric parameters of heat source models using analytical solutions and regression analysis[J]. Journal of Mechanical Science and Technology, 2023, 37(12): 6739-6747.
[22]王江超,杜仕忠,陈相飞,等.高强钢薄板切割变形的机理研究及预控分析[J].中国舰船研究,2025,20(2):299-307.
WANG Jiang-chao, DU Shi-zhong, CHEN Xiang-fei, et al. Mechanism analysis of cutting distortion of thin plate with high tensile strength steel for its prediction and mitigation[J]. Chinese Journal of Ship Research, 2025, 20(2): 299-307.
[23]樊云博,鲍亮亮,蒋 俊,等.基于铜套线圈加热器的管道热丝TIG焊模拟技术研究[J].焊接技术,2023,52(7):53-57.
FAN Yun-bo, BAO Liang-liang, JIANG Jun, et al. Research on simulation technology of pipeline hot wire TIG weld based on copper coil heater[J]. Welding Technology, 2023, 52(7): 53-57.
[24]GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15: 299-305.
[25]方 静,祁文军,胡国玉.8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J].材料导报,2023,37(22):155-160.
FANG Jing, QI Wen-jun, HU Guo-yu. Numerical simulation and experimental study on TIG welding of 8 mm medium and heavy plate TC4 titanium alloy plate[J]. Materials Reports, 2023, 37(22): 155-160.
[26]DUPONT J N, MARDER A R. Thermal efficiency of arc welding processes[J]. Welding Journal—Including Welding Research Supplement, 1995, 74(12): 406-416.
[27]GARCÍA-GARCÍA V, CAMACHO-ARRIAGA J C, REYES-CALDERÓN F. A simplified elliptic paraboloid heat source model for autogenous GTAW process[J]. International Journal of Heat and Mass Transfer, 2016, 100: 536-549.
[28]AARBOGH H M, HAMIDE M, FJAER H G, et al. Experimental validation of finite element codes for welding deformations[J]. Journal of Materials Processing Technology, 2010, 210(13): 1681-1689.
[29]马 悦.双椭球焊接热源模型一般式的数值模拟研究[D].天津:河北工业大学,2015.
MA Yue. Study on numerical simulation of general expression of double ellipsoidal heat source model[D]. Tianjin: Hebei University of Technology, 2015.
[30]左善超.精密机床焊接结构件残余应力分析及调控机理研究[D].北京:北京科技大学,2023.
ZUO Shan-chao. Research on residual stress analysis and regulation mechanism in welding structure of precision machine tools[D]. Beijing: University of Science and Technology Beijing, 2023.
[31]董文超,文明月,庞辉勇,等.Fe-Cr-Ni-Mo系高强钢焊接热影响区特征热循环曲线的建立与组织[J].金属热处理,2017,42(12):207-212.
DONG Wen-chao, WEN Ming-yue, PANG Hui-yong, et al. Microstructure and characterized thermal cycle curve of heat-affected zone of a Fe-Cr-Ni-Mo high-strength steel[J]. Heat Treatment of Metals, 2017, 42(12): 207-212.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):44.

备注/Memo

备注/Memo:
收稿日期:2025-04-22
基金项目:国家重点研发计划项目(2021YFB2601000); 中央高校基本科研业务费专项资金项目(300102214916)
作者简介:刘小光(1975-),男,陕西临潼人,工学博士研究生,正高级工程师,E-mail:490619511@qq.com。
通信作者:朱伟庆(1987-),男,湖南娄底人,教授,工学博士,E-mail:zhuweiqing87@126.com。
更新日期/Last Update: 2025-12-20