[1]贾俊峰,刘若菲,张龙冠,等.基于二次谐波的预应力筋孔道灌浆脱空定位方法[J].长安大学学报(自然科学版),2025,45(6):87-96.
 JIA Jun-feng,LIU Ruo-fei,ZHANG Long-guan,et al.Method of locating grouting voids in prestressed tendon ducts based on second harmonic[J].Journal of Chang’an University (Natural Science Edition),2025,45(6):87-96.
点击复制

基于二次谐波的预应力筋孔道灌浆脱空定位方法()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年6期
页码:
87-96
栏目:
桥梁智能运维与防灾减灾
出版日期:
2025-11-30

文章信息/Info

Title:
Method of locating grouting voids in prestressed tendon ducts based on second harmonic
文章编号:
1671-8879(2025)06-0087-10
作者:
贾俊峰1刘若菲1张龙冠1李胜利2刘自勇3
(1. 北京工业大学 桥梁工程安全与韧性全国重点实验室,北京 100124; 2. 郑州大学 土木工程学院,河南 郑州 450001; 3. 洛阳市立业建筑质量检测有限公司,河南 洛阳 471003)
Author(s):
JIA Jun-feng1 LIU Ruo-fei1 ZHANG Long-guan1 LI Sheng-li2 LIU Zi-yong3
(1. State Key Laboratory of Bridge Safety and Resilience, Beijing University of Technology,Beijing 100124, China; 2. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001,Henan, China; 3. Luoyang Liye Construction Quality Inspection Co., Ltd., Luoyang 471003, Henan, China)
关键词:
桥梁工程 灌浆缺陷 脱空定位 二次谐波 接触声学非线性 超声导波 后张预应力混凝土结构
Keywords:
bridge engineering grouting defect void location second harmonic contact acoustic nonlinearity ultrasonic guided wave post-tensioned prestressed concrete structure
分类号:
U446
文献标志码:
A
摘要:
采用纵向导波二次谐波进行预应力筋孔道灌浆脱空定位,基于理论分析、数值模拟和试验测试等方法研究了灌浆钢绞线中纵向导波的激励、传播和接收行为; 根据超声导波与接触型损伤产生不连续性界面相互作用引发的二次谐波产生原理和灌浆钢绞线的群速度频散曲线,确定了预应力筋孔道灌浆脱空定位公式; 对于脱空试件的3D模型,采用表面-表面接触模拟了脱空损伤,对于模型梁试件,采用珍珠棉包裹钢绞线模拟了脱空损伤; 在数值模拟和试验测试中,比较了无损和脱空试件的时域和频域响应信号; 根据提出的定位公式,采用时频分析和归一化小波系数进行了脱空定位。研究结果表明:与线性导波不同,提出的方法不依赖基线数据,且对微小损伤敏感; 数值模拟和试验研究的结果具有一致性,脱空试件的频域信号和时频谱中存在除基波频率分量以外的二次谐波频率分量,而无损试件中仅存在基波频率分量; 二次谐波的存在表明入射波与脱空缺陷相互作用引发拍击机制,产生接触声学非线性,并将能量转移到二次谐波频率中,因此,纵向导波二次谐波可定性检测灌浆脱空; 脱空位置估计值均在实际值区间内,无需基线数据即可定位,且其与实际值的相对误差均在6%以内。
Abstract:
The longitudinal guided wave second harmonics were employed to locate grouting voids in prestressed tendon ducts. Through theoretical analysis, numerical simulation, and experimental test, the excitation, propagation, and reception behaviors of longitudinal guided wave in grouted steel strands were investigated. Based on the principle of second harmonic generation caused by the interface interaction between ultrasonic guided waves and contact-type damage, as well as the group velocity dispersion curve of grouted steel strands, a location formula for detecting grouting voids in prestressed tendon ducts was established. In the 3D model of the void specimen, the surface-to-surface contact was used to simulate the void damage. For the beam specimen model, the steel strands wrapped in pearl cotton were used to simulate the void damage. In both the numerical simulation and experimental test, the time-domain and frequency-domain response signals of intact and void specimens were compared. The proposed location formula, time-frequency analysis, and normalized wavelet coefficients were applied for the void location. The research results indicate that unlike the linear guided wave, the proposed method does not rely on the baseline data and is sensitive to minor damage. The results of numerical simulation and experimental study are consistent. In the frequency-domain signal and time-frequency spectrum of void specimens, second harmonic frequency components appear alongside the fundamental frequency component, whereas only the fundamental frequency component presents in the intact specimen. The presence of the second harmonic suggests that the interaction between the incident wave and the void defect triggers a collision mechanism, resulting in contact acoustic nonlinearity and transferring energy to the second harmonic frequency. Therefore, thelongitudinal guided wave second harmonics can qualitatively detect the grout voids. The estimated void locations all fall within the actual value range and can be located without the baseline data. The relative error between the estimated and actual values is within 6%.3 tabs, 13 figs, 31 refs.

参考文献/References:

[1] KAMALAKANNAN S, THIRUNAVUKKARASU R, PILLAI R G, et al. Factors affecting the performance characteristics of cementitious grouts for post-tensioning applications[J]. Construction and Building Materials, 2018, 180: 681-691.
[2]LI S L, GAO X, WANG J F, et al. Investigation of the applicability of infrared thermography detection of grouting voids in prestressed tendon ducts under hydration heat excitation[J]. NDT and E International, 2024, 143: 103055.
[3]密士文,朱自强,彭凌星,等.T梁预应力波纹管压浆密实度超声检测试验研究[J].中南大学学报(自然科学版),2013,44(6):2378-2384.
MI Shi-wen, ZHU Zi-qiang, PENG Ling-xing, et al. Experimental study of detecting grouting density of pre-stressed tendon ducts through ultrasonic[J]. Journal of Central South University(Science and Technology), 2013, 44(6): 2378-2384.
[4]TERZIOGLU T, KARTHIK M M, HURLEBAUS S, et al. Nondestructive evaluation of grout defects in internal tendons of post-tensioned girders[J]. NDT and E International, 2018, 99: 23-35.
[5]IM S B, HURLEBAUS S, TREJO D. Inspection of voids in external tendons of posttensioned bridges[J]. Transportation Research Record, 2010, 2172: 115-122.
[6]MARTIN J, BROUGHTON K J, GIANNOPOLOUS A, et al. Ultrasonic tomography of grouted duct post-tensioned reinforced concrete bridge beams[J]. NDT and E International, 2001, 34(2): 107-113.
[7]ASLAM M, PARK J, LEE J. Microcrack inspection in a functionally graded plate structure using nonlinear guided waves[J]. Structures, 2023, 49: 666-677.
[8]ZIMA B, RUCKA M. Guided ultrasonic waves for detection of debonding in bars partially embedded in grout[J]. Construction and Building Materials, 2018, 168: 124-142.
[9]ZIMA B, KEDRA R. Debonding size estimation in reinforced concrete beams using guided wave-based method[J]. Sensors, 2020, 20(2): 389.
[10]CAO Y Q, NG C T, SMITH S T. Debonding detection in FRP-strengthened concrete structures utilising nonlinear Rayleigh wave mixing[J]. Measurement, 2023, 214: 112736.
[11]NG C T, YEUNG C, YIN T Y, et al. Investigation of nonlinear torsional guided wave mixing in pipes buried in soil[J]. Engineering Structures, 2022, 273: 115089.
[12]PRUELL C, KIM J Y, QU J, et al. A nonlinear-guided wave technique for evaluating plasticity-driven material damage in a metal plate[J]. NDT and E International, 2009, 42(3): 199-203.
[13]XIANG Y X, DENG M X, XUAN F Z, et al. Experimental study of thermal degradation in ferritic Cr-Ni alloy steel plates using nonlinear Lamb waves[J]. NDT and E International, 2011, 44(8): 768-774.
[14]BROTHERHOOD C J, DRINKWATER B W, DIXON S. The detectability of kissing bonds in adhesive joints using ultrasonic techniques[J]. Ultrasonics, 2003, 41(7): 521-529.
[15]ASEEM A, NG C T. Debonding detection in rebar-reinforced concrete structures using second harmonic generation of longitudinal guided wave[J]. NDT and E International, 2021, 122: 102496.
[16]SOLEIMANPOUR R, NG C T. Locating delaminations in laminated composite beams using nonlinear guided waves[J]. Engineering Structures, 2017, 131: 207-219.
[17]SOLODOV I Y, KROHN N, BUSSE G. CAN: an example of nonclassical acoustic nonlinearity in solids[J]. Ultrasonics, 2002, 40(1/2/3/4/5/6/7/8): 621-625.
[18]PINEDA ALLEN J C, NG C T. Debonding detection at adhesive joints using nonlinear Lamb waves mixing[J]. NDT and E International, 2022, 125: 102552.
[19]蒋 欢,朱品竹,郑场松,等.纵向导波在钢绞线中传播及缺陷检测数值模拟[J].中国钨业,2019,34(2):8-15.
JIANG Huan, ZHU Pin-zhu, ZHENG Chang-song, et al. Numerical simulation of propagation and defect detection of longitudinal guided waves in steel strands[J]. China Tungsten Industry, 2019, 34(2): 8-15.
[20]刘增华,刘 溯,吴 斌,等.预应力钢绞线中超声导波声弹性效应的试验研究[J].机械工程学报,2010,46(2):22-27.
LIU Zeng-hua, LIU Su, WU Bin, et al. Experimental research on acoustoelastic effect of ultrasonic guided waves in prestressing steel strand[J]. Journal of Mechanical Engineering, 2010, 46(2): 22-27.
[21]FARHIDZADEH A, SALAMONE S. Reference-free corrosion damage diagnosis in steel strands using guided ultrasonic waves[J]. Ultrasonics, 2015, 57: 198-208.
[22]LIU Z H, ZHAO J C, WU B, et al. Configuration optimization of magnetostrictive transducers for longitudinal guided wave inspection in seven-wire steel strands[J]. NDT and E International, 2010, 43(6): 484-492.
[23]ZIMA B. Guided wave propagation in detection of partial circumferential debonding in concrete structures[J]. Sensors, 2019, 19(9): 2199.
[24]KMET S, STANOVA E, FEDORKO G, et al. Experimental investigation and finite element analysis of a four-layered spiral strand bent over a curved support[J]. Engineering Structures, 2013, 57: 475-483.
[25]ABDULLAH A B M, RICE J A, HAMILTON H R, et al. An investigation on stressing and breakage response of a prestressing strand using an efficient finite element model[J]. Engineering Structures, 2016, 123: 213-224.
[26]DATTA D, KISHORE N N. Features of ultrasonic wave propagation to identify defects in composite materials modelled by finite element method[J]. NDT and E International, 1996, 29(4): 213-223.
[27]BARTOLI I, LANZA DI SCALEA F, FATEH M, et al. Modeling guided wave propagation with application to the long-range defect detection in railroad tracks[J]. NDT and E International, 2005, 38(5): 325-334.
[28]LEE Y F, LU Y. Identification of fatigue crack under vibration by nonlinear guided waves[J]. Mechanical Systems and Signal Processing, 2022, 163: 108138.
[29]SOLEIMANPOUR R, NG C T, WANG C H. Higher harmonic generation of guided waves at delaminations in laminated composite beams[J]. Structural Health Monitoring, 2017, 16(4): 400-417.
[30]MICHAELS T E, MICHAELS J E, RUZZENE M. Frequency-wavenumber domain analysis of guided wavefields[J]. Ultrasonics, 2011, 51(4): 452-466.
[31]ZHAO G Q, WANG B, WANG T, et al. Detection and monitoring of delamination in composite laminates using ultrasonic guided wave[J]. Composite Structures, 2019, 225: 111161.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):44.

备注/Memo

备注/Memo:
收稿日期:2025-05-05
基金项目:国家自然科学基金项目(52178449)
作者简介:贾俊峰(1982-),男,河南周口人,教授,工学博士,E-mail:jiajunfeng@bjut.edu.cn。
更新日期/Last Update: 2025-12-20