[1]王世超,张岗,贾宇煊,等.爆炸荷载作用下工字钢-混凝土组合梁损伤机理研究[J].长安大学学报(自然科学版),2025,45(6):42-57.
 WANG Shi-chao,ZHANG Gang,JIA Yu-xuan,et al.Study on damage mechanism of I-beam-concrete composite girders under blast loading[J].Journal of Chang’an University (Natural Science Edition),2025,45(6):42-57.
点击复制

爆炸荷载作用下工字钢-混凝土组合梁损伤机理研究()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年6期
页码:
42-57
栏目:
桥梁智能运维与防灾减灾
出版日期:
2025-11-30

文章信息/Info

Title:
Study on damage mechanism of I-beam-concrete composite girders under blast loading
文章编号:
1671-8879(2025)06-0042-16
作者:
王世超1张岗1贾宇煊1刘昊厅1张永飞1倪雅2郭彤3
(1. 长安大学 公路学院,陕西 西安 710064; 2. 苏交科集团股份有限公司,江苏 南京 210017; 3. 东南大学 土木工程学院,江苏 南京 211189)
Author(s):
WANG Shi-chao1 ZHANG Gang1 JIA Yu-xuan1 LIU Hao-ting1 ZHANG Yong-fei1NI Ya2 GUO Tong3
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Jiangsu Transportation Institute Group Co., Ltd., Nanjing 210017, Jiangsu, China; 3. School of Civil Engineering, Southeast University,Nanjing 211189, Jiangsu, China)
关键词:
桥梁工程 工字钢-混凝土组合梁 任意拉格朗日-欧拉方法 爆炸荷载 损伤机理 动态响应
Keywords:
bridge engineering I-beam-concrete composite girder ALE method explosion load damage mechanism dynamic response
分类号:
U411
文献标志码:
A
摘要:
为明确工字钢-混凝土组合梁在近场爆炸下的空间损伤机理并识别其最不利受爆场景,以40 m双向六车道工字钢组合梁作为研究对象,采用LS-DYNA构建包含钢梁、桥面板及栓钉的精细化有限元模型; 为精确捕捉冲击波传播、反射及绕流等关键现象,采用经试验数据验证的任意拉格朗日-欧拉(ALE)流固耦合算法进行模拟; 基于该算法,开展8种典型工况的参数分析,分析不同比例爆距(0.100~0.171 m/kg1/3)及爆炸源纵、横向位置对结构动态响应与损伤模式的影响; 根据钢梁变形与桥面板破损程度,建立包含4个等级的定性损伤分级体系。研究结果表明:结构损伤演化主要集中在爆炸后的前10 ms内,且损伤程度与比例爆距呈显著负相关; 当比例爆距从0.171 m/kg1/3降至0.100 m/kg1/3时,桥面板破口面积扩大近6倍,跨中峰值挠度增加1.2倍; 爆炸源横向位置对损伤的控制作用远大于纵向位置,后者仅改变响应区域,而前者则彻底改变损伤模式; 当爆炸从桥梁中心线移至边梁正上方时,显著的绕流效应导致能量高度集中,钢梁的上翼缘和腹板吸收了约70%的能量,发生严重剪切屈曲和撕裂,构成结构最不利受爆场景; 建立的基于ALE方法的分析框架可为该类组合梁的抗爆性能评估、薄弱区域识别与防护设计提供关键的数值分析手段与理论依据。
Abstract:
To clarify the spatial damage mechanism of I-steel-concrete composite girders under near-field explosions and identify their most critical blast scenarios, a 40 m two-way six-lane I-steel-composite girder was studied. A refined finite element model including the steel girder, bridge deck, and shear studs was developed using LS-DYNA. The simulation employed the experimentally validated arbitrary Lagrangian-Eulerian(ALE)fluid-structure interaction algorithm to accurately capture key phenomena such as blast wave propagation, reflection, and flow-around effects. Based on the algorithm, a parametric analysis of eight typical working conditions was conducted to investigate the effects of scaled distance(from 0.100 to 0.171 m/kg1/3)and the longitudinal and transverse positions of the explosion source on structural dynamic response and damage patterns. A qualitative damage classification system consisting of four levels was established according to the deformation of the steel girder and the extent of deck damage. The results show that structural damage evolution primarily occurs within the first 10 ms after detonation, and damage severity exhibits a significant negative correlation with scaled distance. When the scaled distance decreases from 0.171 m/kg1/3 to 0.100 m/kg1/3, the breach area in the bridge deck increases nearly sixfold, and the peak mid-span deflection rises by 1.2 times. The transverse position of the explosion source influences damage far more significantly than the longitudinal position. The latter only alters the response region, while the former fundamentally changes the failure mode. When the explosion moves from the bridge centerline to directly above the edge girder, pronounced flow-around effects lead to highly concentrated energy, causing the upper flange and web of the steel girder to absorb about 70% of the energy, resulting in severe shear buckling and tearing. This constitutes the most critical blast scenario for the structure. The ALE-based analytical framework established in this study provides key numerical tools and a theoretical basis for blast resistance evaluation, vulnerable area identification, and protective design of such composite girders.7 tabs, 26 figs, 36 refs.

参考文献/References:

[1] 张 岗,宋超杰,李徐阳,等.碳氢火灾下钢-混组合梁破坏试验研究[J].中国公路学报,2022,35(6):135-146.
ZHANG Gang, SONG Chao-jie, LI Xu-yang, et al. Experimental study on failure of steel-concrete composite beams under hydrocarbon fire[J]. China Journal of Highway and Transport, 2022, 35(6): 135-146.
[2]SONG C J, ZHANG G, LI X Y, et al. Experimental and numerical study on failure mechanism of steel-concrete composite bridge beam under fuel fire exposure[J]. Engineering Structures, 2021, 247: 113230.
[3]夏志成,蔡 萌,孔新立.钢板夹薄壁钢管组合板抗接触爆炸数值模拟[J].工程爆破,2018,24(5):1-7.
XIA Zhi-cheng, CAI Meng, KONG Xin-li. Numerical simulation of anti contact explosion of sandwich panel with steel sheet clamped thin-walled steel pipe[J]. Engineering Blasting, 2018, 24(5): 1-7.
[4]李忠献,师燕超.建筑结构抗爆分析理论[M].北京:科学出版社,2015.
LI Zhong-xian, SHI Yan-chao. Anti-explosion analysis theory of building structures[M]. Beijing: Science press, 2015.
[5]耿少波,葛培杰,李 洪,等.爆炸荷载结构等效静载动力系数研究[J].兵工学报,2019,40(10):2088-2095.
GENG Shao-bo, GE Pei-jie, LI Hong, et al. Study on equivalent static load dynamic coefficient of explosive load structure[J]. Journal of Ordnance, 2019, 40(10): 2088-2095.
[6]甘 露,宗周红.装药形状对爆炸作用下钢桥面板损伤的影响研究[J].中国公路学报,2024,37(5):80-93.
GAN Lu, ZONG Zhou-hong. Study on the influence of charge shape on the damage of steel bridge deck under explosion[J]. China Journal of Highway and Transport, 2024, 37(5): 80-93.
[7]胡志坚,唐杏红,方建桥.近场爆炸时混凝土桥梁压力场与响应分析[J].中国公路学报,2014,27(5):141-147,157.
HU Zhi-jian, TANG Xing-hong, FANG Jian-qiao. Pressure field and response analysis of concrete bridge during near-field explosion[J]. China Journal of Highway and Transport, 2014, 27(5): 141-147, 157.
[8]杜文超.爆炸荷载作用下CFRP方钢管混凝土柱动力响应研究[D].西安:长安大学,2017.
DU Wen-chao. Study on dynamic response of CFRP concrete-filled square steel tubular columns under explosive loading[D]. Xi'an: Chang'an University, 2017.
[9]KANG K W, LEE S C, LIEW R J Y. Analysis of steel-concrete composite column subject to blast[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2013, 166(1): 15-27.
[10]耿少波,李 洪,葛培杰.考虑跃迁的指数型炸药空爆荷载等效静载动力系数[J].爆炸与冲击,2019,39(3):33-41.
GENG Shao-bo, LI Hong, GE Pei-jie. Equivalent static dynamic coefficient of air explosion load of exponential explosive considering transition[J]. Explosion and Shock Waves, 2019, 39(3): 33-41.
[11]耿少波,葛培杰,刘亚玲,等.化学爆炸等效单自由度结构体系抗力动力系数分析[J].振动与冲击,2019,38(6):166-171.
GENG Shao-bo, GE Pei-jie, LIU Ya-ling, et al. Dynamic coefficient analysis of resistance of equivalent single-degree-of-freedom structural system in chemical explosion[J]. Vibration and shock, 2019, 38(6): 166-171.
[12]ZHAO C, CHEN Y, JIN Q, et al. Blast resistance of single steel-concrete composite slabs under contact explosion[J]. Structural Concrete, 2023, 24: 6025-6048.
[13]ZHAO C, LU X, WANG Q, et al. Experimental and numerical investigation of steel-concrete(SC)slabs under contact blast loading[J]. Engineering Structures, 2019, 196: 109337.
[14]ZHAO C, HE K, ZHI L, et al. Blast behavior of steel-concrete-steel sandwich panel: Experiment and numerical simulation[J]. Engineering Structures, 2021, 246: 112998.
[15]姜鹏飞,叶 琳,伍 俊.爆炸冲击波作用下钢板-混凝土组合结构受力性能分析[J].武汉理工大学学报,2013,35(5):95-98.
JIANG Peng-fei, YE Lin, WU Jun. Mechanical performance analysis of steel plate-concrete composite structure under explosion shock wave[J]. Journal of Wuhan University of Technology, 2013, 35(5): 95-98.
[16]LI G Q, YANG T C, CHEN S W. Behavior and simplified analysis of steel-concrete composite beams subjected to localized blast loading[J]. Structural Engineering and Mechanics, 2009, 32(2): 337-350.
[17]杨涛春,李国强.爆炸荷载作用下钢-混凝土组合梁的动力响应及破坏形态分析[J].建筑钢结构进展,2008(4):26-31,38.
YANG Tao-chun, LI Guo-qiang. Dynamic response and failure mode analysis of steel-concrete composite beams under explosion load[J]. Progress of Building Steel Structure, 2008(4): 26-31, 38.
[18]杨涛春,李国强,陈素文.接触爆炸荷载位置对钢-混凝土组合梁的影响[J].建筑结构,2010,40(增1):240-242.
YANG Tao-chun, LI Guo-qiang,CHEN Su-wen. Influence of contact explosion load position on steel-concrete composite beam[J]. Architectural structure, 2010, 40(S1): 240-242.
[19]杨涛春,李国强.接触爆炸荷载下钢-混凝土组合梁的破坏模式研究[J].结构工程师,2009,25(1):34-40.
YANG Tao-chun, LI Guo-qiang. Study on failure mode of steel-concrete composite beam under contact explosion load[J]. Construction Engineer, 2009, 25(1): 34-40.
[20]ZHU Z, LI Y, HE S, et al. Analysis of the failure mechanism of multi-beam steel-concrete composite bridge under car explosion[J]. Advances In Structural Engineering, 2020, 23(3): 538-548.
[21]MOHAMMED T A, ABEBE S. Numerical investigation of steel-concrete composite(SCC)beam subjected to combined blast-impact loading[J]. Heliyon, 2022, 8(9): 10672.
[22]刘建昱.爆炸荷载作用下钢-混凝土组合梁桥动态力学响应及损伤机理研究[D].西安:长安大学,2023.
LIU Jian-yu. Study on dynamic mechanical response and damage mechanism of steel-concrete composite beam bridge under explosive load[D]. Xi'an: Chang'an University, 2023.
[23]ANANDAVALLI N, LAKSHMANAN N, IYER N R, et al. A novel modelling technique for blast analysis of steel-concrete composite panels[J]. Procedia Engineering, 2011, 14: 2429-2437.
[24]LI Y, HE S. Research of steel-concrete composite bridge under blasting loads[J]. Advances in Civil Engineering, 2018, 2018: 5748278.
[25]LIU J, LI Y. Analysis of the explosion resistance of an I-shaped steel-concrete composite structure under contact explosion[J]. Advances in Structural Engineering, 2023, 26(8): 1453-1467.
[26]THIRUMALAISELVI A, ANANDAVALLI N, RAJASANKAR J, et al. Numerical evaluation of deformation capacity of laced steel-concrete composite beams under monotonic loading[J]. Steel and Composite Structures, 2016, 20(1): 167-184.
[27]ANANDAVALLI N, LAKSHMANAN N, IYER N R, et al. A novel modelling technique for blast analysis of steel-concrete composite panels[J]. Procedia Engineering, 2011, 14: 2429-2437.
[28]秦彦帅.爆炸荷载作用下钢板混凝土组合结构的动力学响应[D].锦州:辽宁工业大学,2022.
QIN Yan-shuai. Dynamic response of steel plate concrete composite structure under explosion load[D]. Jinzhou: Liaoning University of Technology, 2022.
[29]KINGERY C N, BULMASH G. Air blast parameters from TNT spherical air burst and hemispherical surface burst[R]. Washington DC: US Army Ballistic Research Laboratory, 1984.
[30]唐 彪.钢筋混凝土墩柱的抗爆性能试验研究[D].南京:东南大学,2017.
TANG Biao. Experimental study on blast resistance of reinforced concrete piers[D]. Nanjing: Southeast University, 2017.
[31]李明鸿.双层钢管混凝土组合墩柱爆炸损伤机理和评估方法研究[D].南京:东南大学,2022.
LI Ming-hong. Study on explosion damage mechanism and evaluation method of double-layer concrete-filled steel tubular composite pier[D]. Nanjing: Southeast University, 2022.
[32]FEMA-428/BIPS-07, Primer to design safe school projects in case of terrorist attacks and school shootings[S].
[33]孔新立,金丰年,蒋美蓉.恐怖爆炸袭击方式及规模分析[J].爆破,2007(3):88-92.
KONG Xin-li, JIN Feng-nian, JIANG Mei-rong. Analysis on the attack mode and scale of terrorist explosion[J]. Blasting, 2007(3): 88-92.
[34]JIANG J, XIA C, YAO J, et al. Vulnerability analysis of HSR bridge under near-field blast based on response surface method[J]. Structures, 2023, 55: 983-994.
[35]高 超,宗周红,伍 俊.爆炸荷载下钢筋混凝土框架结构倒塌破坏试验研究[J].土木工程学报,2013,46(7):9-20.
GAO Chao, ZONG Zhou-hong, WU Jun. Experimental study on collapse failure of reinforced concrete frame structure under explosion load[J]. China Civil Engineering Journal, 2013, 46(7): 9-20.
[36]UFC 3-340-02, Structures to resist the effects of accidental explosion[S].

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):44.

备注/Memo

备注/Memo:
收稿日期:2025-05-03
基金项目:国家自然科学基金项目(52408505); 陕西省创新能力支撑计划项目(2023-CX-TD-38); 陕西省杰出青年科学基金项目(2022JC-23); 中央高校基本科研业务专项资金项目(300102214401,300102214903)
作者简介:王世超(1989-),男,内蒙古赤峰人,讲师,工学博士,博士后,E-mail:wangshichao@chd.edu.cn。
更新日期/Last Update: 2025-12-20