[1]邹德强,刘雄,胡睿,等.基于纵向双自由度模型的斜拉桥非线性阻尼器参数及纵向地震响应的简化设计[J].长安大学学报(自然科学版),2025,45(6):31-41.
 ZOU De-qiang,LIU Xiong,HU Rui,et al.Simplified design of nonlinear damper parameters and longitudinal seismic response cable-stayed bridge based on longitudinal double-degree-of-freedom model[J].Journal of Chang’an University (Natural Science Edition),2025,45(6):31-41.
点击复制

基于纵向双自由度模型的斜拉桥非线性阻尼器参数及纵向地震响应的简化设计()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年6期
页码:
31-41
栏目:
桥梁智能运维与防灾减灾
出版日期:
2025-11-30

文章信息/Info

Title:
Simplified design of nonlinear damper parameters and longitudinal seismic response cable-stayed bridge based on longitudinal double-degree-of-freedom model
文章编号:
1671-8879(2025)06-0031-11
作者:
邹德强12刘雄2胡睿13李立峰1
(1. 湖南大学 土木工程学院,湖南 长沙 410082; 2. 中国建筑第五工程局有限公司,湖南 长沙 410004; 3. 湖南省交通规划勘察设计院有限公司,湖南 长沙 410219)
Author(s):
ZOU De-qiang12 LIU Xiong2 HU Rui13 LI Li-feng1
(1. College of Civil Engineering, Hunan University, Changsha 410082, Hunan, China; 2. China Construction Fifth Engineering Bureau Co., Ltd., Changsha 410004, Hunan, China; 3. Hunan Provincial Communications Planning, Survey & Design Insititute Co., Ltd., Changsha 410219, Hunan, China)
关键词:
桥梁工程 阻尼器参数 简化设计 大跨斜拉桥 地震响应
Keywords:
bridge engineering damper parameters simplification long-span cable-stayed bridge seismic response
分类号:
U441.3
文献标志码:
A
摘要:
针对在传统斜拉桥抗震设计中,通常基于精细化有限元动力分析模型开展非线性时程分析,以获得结构地震需求结果,进而优化阻尼器参数,为简化初步设计过程,提出一种单塔或对称双塔斜拉桥简化纵向双自由度模型(DDFM)建立方法。在此基础上,采用解析和能量方法推导与质量及刚度相关的参数和结构纵向固有频率的分析方程,并提出黏滞阻尼器的等效线性化模型。此外,推导带有非线性黏滞阻尼器的大跨度斜拉桥的纵向地震响应分析方程。最后,通过与实桥有限元分析结果的横向对比,进一步验证所建立的简化纵向DDFM的有效性和适用性。研究结果表明:对于基本周期和水平抗推刚度,简化纵向DDFM计算得到的结果和有限元模拟结果的差异分别为2.05%和1.5%; 当黏滞阻尼器等效阻尼比为0.1~0.8时,简化纵向DDFM计算得到的关键构件纵桥向地震需求结果与有限元模拟结果误差小于20%。研究结果可为设计单位提供有效参考,以制定简化的初步设计方案,快速得到大跨度斜拉桥动力特性和纵向地震响应、确定合理非线性阻尼器参数。
Abstract:
In traditional seismic design of cable-stayed bridges, nonlinear time history analysis was typically conducted based on refined finite element dynamic models to obtain structural seismic demands, which were used to optimize damper parameters. To streamline the preliminary design process, a simplified double degree of freedom model(DDFM)was proposed for single-pylon or symmetrically double-pylon cable-stayed bridges. Analytical and energy methods were employed to obtain the fundamental period and the parameters related to mass and stiffness. An equivalent linearization model for viscous dampers was also developed. In addition, the analytical equations for the longitudinal seismic response of long-span cable-stayed bridges equipped with nonlinear viscous dampers were derived. The validity and applicability of the simplified DDFM were verified through comparative analysis with finite element results from an actual bridge. Comparative study results that the rusults differences between the simplified DDFM and the finite element simulations are only 2.05% for the fundamental period and 1.5% for the lateral stiffness, respectively. When the equivalent damping ratio of the viscous damper ranges from 0.1 to 0.8, the errors in the longitudinal seismic demands of key components calculated by the simplified DDFM remain below 20% compared to the finite element results. This study results valuable references for design institutes to develop simplified preliminary design schemes, rapidly assess the dynamic characteristics and longitudinal seismic responses of long-span cable-stayed bridges, and determine reasonable nonlinear parameters for viscous dampers.2 tabs, 9 figs, 23 refs.

参考文献/References:

[1] 李立峰,尹会娜,唐嘉豪,等.大跨径斜拉桥横向合理抗震体系研究[J].振动与冲击,2022,41(6):153-159.
LI Li-feng, YIN Hui-na, TANG Jia-hao, et al. Reasonable lateral seismic system of a long-span cable stayed bridge[J]. Journal of Vibration and Shock, 2022, 41(6): 153-159.
[2]李立峰,唐嘉豪,胡 睿,等.基于易损性的中等跨径连续梁桥合理抗震体系评估方法[J].铁道科学与工程学报,2022,19(12):3665-3677.
LI Li-feng, TANG Jia-hao, HU Rui, et al. Evaluation method of reasonable aseismic system for medium-span continuous girder bridges based on fragility[J]. Journal of Railway Science and Engineering, 2022, 19(12): 3665-3677.
[3]李立峰,赵 智,唐嘉豪,等.采用UHPC连接的插槽式预制拼装桥墩抗震性能试验研究[J].振动与冲击,2025,44(2):210-220.
LI Li-feng, ZHAO Zhi, TANG Jia-hao, et al. Experimental study on the seismic performance of prefabricated piers connected by UHPC[J]. Journal of Vibration and Shock, 2025, 44(2): 210-220.
[4]康 炜,李 伟,文 强,等.铁路双边箱混合梁斜拉桥钢-混结合段受力性能[J].交通运输工程学报,2025,25(3):114-129.
KANG Wei, LI Wei, WEN Qiang, et al. Force performance of steel-concrete sections in railway double-box hybrid girder cable-stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 114-129.
[5]项海帆,李瑞霖,杨昌众.悬浮体系斜张桥的近似抗震计算[J].结构工程师,1985(1):64-69.
XIANG Hai-fan, LI Rui-lin, YANG Chang-zhong. Simplified seismic calculation of cable-stayed bridge with suspension system[J]. Structural Engineers, 1985(1): 64-69.
[6]颜海泉,王君杰.飘浮体系斜拉桥纵向抗震计算的单塔模型[J].地震工程与工程振动,2007,27(4):80-86.
YAN Hai-quan, WANG Jun-jie. A tower model for seismic response prediction of floating cable-stayed bridge in longitudinal direction[J]. Journal of Earthquake Engineering and Engineering Vibration, 2007, 27(4): 80-86.
[7]徐 艳,黄永福,李建中.脉冲型地震作用下斜拉桥纵向响应的简化计算[J].华南理工大学学报(自然科学版),2015,43(2):41-47.
XU Yan, HUANG Yong-fu, LI Jian-zhong. Simplified calculation of longitudinal seismic response of cable-stayed bridges subjected to pulsed ground motions[J]. Journal of South China University of Technology(Natural Science Edition), 2015, 43(2): 41-47.
[8]袁万城,闫 冬.斜拉桥纵飘频率简化计算方法[J].同济大学学报(自然科学版),2005,33(11):1423-1427.
YUAN Wan-cheng, YAN Dong. Simplified calculational method of floating frequency for cable-stayed bridges[J]. Journal of Tongji University(Natural Science Edition), 2005, 33(11): 1423-1427.
[9]杨怀宇,李建中.斜拉桥纵漂频率概念简化计算及影响因素讨论[J].建筑结构,2015,45(3):93-96.
YANG Huai-yu, LI Jian-zhong. Discussion on simplified concept calculations and influencing factors of a cable-stayed bridge floating frequency[J]. Building Structure, 2015, 45(3): 93-96.
[10]张文学,寇文琦,陈 盈,等.基于双质点模型斜拉桥纵向一阶自振周期计算[J].桥梁建设,2016,46(3):98-102.
ZHANG Wen-xue, KOU Wen-qi, CHEN Ying, et al. Calculation of first-order longitudinal natural vibration periods of cable-stayed bridges based on double-mass-point models[J]. Bridge Construction, 2016, 46(3): 98-102.
[11]张文学,寇文琦,陈 盈,等.固定铰接体系斜拉桥纵向一阶振动周期简化计算研究[J].湖南大学学报(自然科学版),2017,44(3):28-34.
ZHANG Wen-xue, KOU Wen-qi, CHEN Ying, et al. Study on simplified calculation of first-order longitudinal vibration period for fixed hinge cable-stayed bridges[J]. Journal of Hunan University(Natural Sciences), 2017, 44(3): 28-34.
[12]张文学,寇文琦,陈 盈,等.基于能量法的斜拉桥纵向1阶自振周期简化计算[J].中国公路学报,2017,30(7):50-57.
ZHANG Wen-xue, KOU Wen-qi, CHEN Ying, et al. Simplified calculation of first-order longitudinal natural vibration period of cable-stayed bridges based on energy method[J]. China Journal of Highway and Transport, 2017, 30(7): 50-57.
[13]徐 艳,童 川,李建中.设置纵桥向粘滞阻尼器的斜拉桥的简化动力模型[J].华南理工大学学报(自然科学版),2019,47(4):90-98.
XU Yan, TONG Chuan, LI Jian-zhong. Simplified dynamic model of a cable-stayed bridge with longitudinal viscous dampers[J]. Journal of South China University of Technology(Natural Science Edition)2019, 47(4): 90-98.
[14]SELEEMAH A A, CONSTANTINOU M C. Investigation of seismic response of buildings with linear and nonlinear fluid viscous dampers[R]. Buffalo: National Center for Earthquake Engineering Research, 1997.
[15]ATC. NEHRP pre-standard and commentary for the seismic rehabilitation of buildings[M]. Huntington: FEMA, 2000.
[16]HWANG J, TSENG Y. Design formulations for supplemental viscous dampers to highway bridges[J]. Earthquake Engineering and Structural Dynamics, 2005, 34(13): 1627-1642.
[17]LI X, LI J, ZHANG X Y. Simplified analysis of cable-stayed bridges with longitudinal viscous dampers[J]. Engineering, Construction, and Architectural Management, 2020, 27(8): 1993-2022.
[18]徐 艳,童 川,李建中.漂浮体系斜拉桥黏滞阻尼器参数的简化计算[J].同济大学学报(自然科学版), 2018, 46(5): 574-579.
XU Yan, TONG Chuan, LI Jian-zhong. Simplified calculation of viscous damper parameter for floating-system cable-stayed bridge[J]. Journal of Tongji University(Natural Science), 2018, 46(5): 574-579.
[19]XU Y, TONG C, LI J Z. Simplified calculation method for supplemental viscous dampers of cable-stayed bridges under near fault ground motions[J]. Journal of Earthquake Engineering, 2021, 25(1): 65-81.
[20]CHOPRA A K. Dynamics of structures: Theory and applications to earthquake engineering[M]. 3th ed. Upper Saddle River: Prentice-Hall, Inc., 2007.
[21]付 荣,傅荣华,付安生.基于快速傅里叶变换的地震波加速度构成及其幅频特性研究[J].地震学报,2014,36(3):417-424.
FU Rong, FU Rong-hua, FU An-sheng. Composition and amplitude-frequency characteristics of ground motion acceleration based on fast Fourier transform analysis[J]. Acta Seismologica Sinica, 2014, 36(3): 417-424.
[22]李文博,刘铁林,王 宇.地震动加速度、速度和位移时程的构成[J].工程力学,2020,37(增1):164-167.
LI Wen-bo, LIU Tie-lin, WANG Yu. Compositions of time histories of acceleration and velocity and displacement of ground motion[J]. Engineering Mechanics, 2020, 37(S1): 164-167.
[23]刘新华,冯鹏程,邵旭东,等.海文跨海大桥设计关键技术[J].桥梁建设,2020,50(2):73-79.
LIU Xin-hua, FENG Peng-cheng, SHAO Xu-dong, et al. Key design technique for haiwen sea-crossing bridge[J]. Bridge Construction, 2020, 50(2): 73-79.
[24]李卫华,杨光武,徐 伟.黄冈公铁两用长江大桥主跨567 m钢桁梁斜拉桥设计[J].桥梁建设,2013,43(2):10-15.
LI Wei-hua, YANG Guang-wu, XU Wei. Design of steel truss girder cable-stayed bridge of 567 m main span of Huanggang Changjiang River rail-cum-road bridge[J]. Bridge Construction, 2013, 43(2): 10-15.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):44.

备注/Memo

备注/Memo:
收稿日期:2025-05-07
基金项目:国家自然科学基金项目(51978257,52278176); 中建五局科技研发计划资助项目(cscec5b-2020-17)
作者简介:邹德强(1976-),男,湖南邵阳人,中国建筑第五工程局有限公司工程师,E-mail:tzdlxq0222@163.com。
通信作者:李立峰(1971-),男,湖南沅江人,教授,博士研究生导师,工学博士,E-mail:lilifeng@hnu.edu.cn。
更新日期/Last Update: 2025-12-20