[1]周敉,王亮,刘旭奇.基于检测数据映射的在役桥梁有限元模型及抗震性能评价[J].长安大学学报(自然科学版),2025,45(6):1-16.
 ZHOU Mi,WANG Liang,LIU Xu-qi.Finite element models and seismic performance evaluation of in-service bridges based on measured data mapping[J].Journal of Chang’an University (Natural Science Edition),2025,45(6):1-16.
点击复制

基于检测数据映射的在役桥梁有限元模型及抗震性能评价()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年6期
页码:
1-16
栏目:
桥梁智能运维与防灾减灾
出版日期:
2025-11-30

文章信息/Info

Title:
Finite element models and seismic performance evaluation of in-service bridges based on measured data mapping
文章编号:
1671-8879(2025)06-0001-16
作者:
周敉12王亮12刘旭奇12
(1. 长安大学 公路学院,陕西 西安 710064; 2. 长安大学 旧桥检测与加固技术交通行业重点实验室,陕西 西安 710064)
Author(s):
ZHOU Mi12 WANG Liang12 LIU Xu-qi12
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Key Laboratory of Transport Industry of Bridge Detection Reinforcement Technology, Chang'an University, Xi'an 710064, Shaanxi, China)
关键词:
桥梁工程 抗震性能评价 CSI Bridge二次开发 在役桥梁 有限元模型修正 参数灵敏度分析
Keywords:
bridge engineering seismic performance evaluation secondary development of CSI Bridge in-service bridge finite element model correction parameter sensitivity analysis
分类号:
U447
文献标志码:
A
摘要:
为解决因材料性能退化及建造误差导致设计参数与成桥状态存在偏差,进而影响桥梁抗震性能评估准确性的问题,建立了基于检测数据映射的在役桥梁有限元模型; 基于C#语言对大型有限元软件CSI Bridge进行二次开发,建立了数字映射模型的实现程序,以高效提取并修改CSI Bridge参数,并基于模态频率和地震响应对某大跨径连续刚构桥的材料属性、几何属性和边界条件进行了参数灵敏度分析; 根据现场检测数据,依托开发的数字映射模型实现程序提取和修改了初始有限元模型的相关参数,得到了基于检测数据映射的有限元模型,并分别对修正前后的有限元模型进行了地震响应分析和抗震性能评价。研究结果表明:对于经过一定服役年限并遭受材料性能退化和建造误差影响的连续刚构桥,其结构刚度相较于设计阶段会有所下降,其抗震性能整体上低于初始有限元模型; 模型修正后桥墩关键截面的地震弯矩和等效屈服弯矩的最大降幅分别为26.7%和40.0%,且主墩墩顶截面的能力需求比低于限值; 主梁和主墩混凝土材料属性、主墩截面几何属性和墩柱钢筋屈服强度灵敏度最高,在现场检测中需优先考虑。研究结果可为在役桥梁的抗震性能评价提供参考。
Abstract:
To solve the problem of deviations between design parameters and as-built bridge condition caused by material performance degradation and construction errors, which affects the accuracy of seismic performance evaluation, a finite element model of an in-service bridge was established based on measured data mapping. Through the secondary development of CSI Bridge using the C# language, an implementation procedure for the digital mapping model was developed to efficiently extract and modify the parameters in CSI Bridge. Based on the modal frequencies and seismic responses, a parameter sensitivity analysis was conducted on the material properties, geometric properties, and boundary conditions of a long-span continuous rigid bridge. Using the field measured data, the relevant parameters of the initial finite element model were extracted and modified by means of the developed digital mapping model implementation procedure, resulting in a finite element model based on the measured data mapping. Then, the seismic response analysis and seismic performance evaluation were carried out on the finite element models before and after correction, respectively. The research results indicate that for a continuous rigid bridge that has been in service for certain years and is affected by material degradation and construction errors, its structural stiffness decreases compared to the design stage, and its seismic performance is generally lower than that of the initial finite element model. After the model correction, the maximum reductions in seismic bending moment and equivalent yield bending moment at critical sections of piers are 26.7% and 40.0%, respectively, and the capacity requirement ratio at the top section of main pier is below the limit value. The concrete material properties of main girder and piers, the geometric properties of main pier section, and the steel bar yield strength of pier column have the highest sensitivity. They should be prioritized during the field measurement. The research results can provide a reference for the seismic performance evaluation of in-service bridges.7 tabs, 19 figs, 32 refs.

参考文献/References:

[1] 陈树礼,刘永前.城市与公路桥梁技术状况评定方法对比分析[J].建筑科学与工程学报,2018,35(3):95-103.
CHEN Shu-li, LIU Yong-qian. Comparative analysis of technical condition evaluation of city bridges and highway bridges[J]. Journal of Architecture and Civil Engineering, 2018, 35(3): 95-103.
[2]MOTTERSHEAD J E, FRISWELL M I. Model updating in structural dynamics: A survey[J]. Journal of Sound and Vibration, 1993, 167(2): 347-375.
[3]HOU J L, JANKOWSKI , OU J P. A substructure isolation method for local structural health monitoring[J]. Structural Control and Health Monitoring, 2011, 18(6): 601-618.
[4]王佐才,丁雅杰,戈 壁,等.桥梁结构非线性模型修正研究综述[J].交通运输工程学报,2022,22(2):59-75.
WANG Zuo-cai, DING Ya-jie, GE Bi, et al. Review on nonlinear model updating for bridge structures[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 59-75.
[5]MOTTERSHEAD J E, LINK M, FRISWELL M I. The sensitivity method in finite element model updating: A tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2275-2296.
[6]JUNG D S, KIM C Y. Finite element model updating on small-scale bridge model using the hybrid genetic algorithm[J]. Structure and Infrastructure Engineering, 2013, 9(5): 481-495.
[7]韩万水,刘修平,邓 露,等.基于实数编码遗传算法的桥梁有限元模型修正方法[J].交通运输工程学报,2019,19(2):14-24.
HAN Wan-shui, LlU Xiu-ping, DENG Lu, et al. Updating method of bridge finite element model based on real coded genetic algorithm[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 14-24.
[8]KANG J T, ZHANG X Q, CAO H Y, et al. Research on multi-alternatives problem of finite element model updating based on IAFSA and Kriging model[J]. Sensors, 2020, 20(15): 4274.
[9]TRAN-NGOC H, KHATIR S, DE ROECK G, et al. Model updating for Nam O Bridge using particle swarm optimization algorithm and genetic algorithm[J]. Sensors, 2018, 18(12): 4131.
[10]康俊涛,张亚州,秦世强.考虑多峰值同时寻优的结构有限元模型修正[J].兰州大学学报(自然科学版),2020,56(5):681-689.
KANG Jun-tao, ZHANG Ya-zhou, QIN Shi-qiang. Finite element model updating considering the objective function's multiple peaks[J]. Journal of Lanzhou University(Natural Sciences), 2020, 56(5): 681-689.
[11]秦世强,甘耀威,康俊涛.基于改进万有引力搜索算法的南中环桥模型修正[J].振动与冲击,2021,40(19):116-124,136.
QIN Shi-qiang, GAN Yao-wei, KANG Jun-tao. Model updating of Nanzhonghuan Bridge based on improved gravitational search algorithm[J]. Journal of Vibration and Shock, 2021, 40(19): 116-124, 136.
[12]孙华怀,徐 俊,陈惟珍.基于自适应模型的在役斜拉桥时变力学性能追踪[J].振动与冲击,2023,42(5):190-199.
SUN Hua-huai, XU Jun, CHEN Wei-zhen. Time-varying mechanical properties tracking of in-service cable-stayed bridge based on adaptive model[J]. Journal of Vibration and Shock, 2023, 42(5): 190-199.
[13]赵立财.基于MEA-BP神经网络的自锚式悬索桥施工阶段吊索索力预测分析[J].铁道学报,2023,45(3):55-61.
ZHAO Li-cai. Prediction and analysis of sling force of self-anchored suspension bridge in construction stage based on MEA-BP neural network[J]. Journal of the China Railway Society, 2023, 45(3): 55-61.
[14]ZHAO R, WU Y H, FENG Z H. Research for pedestrian steel bridge design of neural network in structural model updating[J]. Shock and Vibration, 2022, 2022: 1057422.
[15]魏锦辉,任伟新.基于响应面方法的桥梁静动力有限元模型修正[J].公路交通科技,2015,32(2):68-73.
WEI Jin-hui, REN Wei-xin. Static and dynamic bridge finite element model updating based on response surface method[J]. Journal of Highway and Transportation Research and Development, 2015, 32(2): 68-73.
[16]XIA Z Y, LI A Q, FENG D M, et al. Comparative analysis of typical mathematical modelling methods through model updating of a real-life bridge structure with measured data[J]. Measurement, 2021, 174: 108987.
[17]秦世强,袁永刚,韩 硕,等.基于试验数据和位移置信准则的铁路斜拉桥多目标模型修正[J].铁道学报,2023,45(6):151-160.
QIN Shi-qiang, YUAN Yong-gang, HAN Shuo, et al. Multi-objective model updating of cable-stayed bridge based on experimental data and displacement assurance criterion[J]. Journal of the China Railway Society, 2023, 45(6): 151-160.
[18]HUANG X X, CHEN J Q, ZHU H P. Assessing small failure probabilities by AK-SS: An active learning method combining Kriging and subset simulation[J]. Structural Safety, 2016, 59: 86-95.
[19]李宁波,朱清帅,周 宇,等.基于模态参数修正的桥梁地震易损性分析方法研究[J].防灾减灾工程学报,2025,45(2):384-392.
LI Ning-bo, ZHU Qing-shuai, ZHOU Yu, et al. Research on seismic vulnerability analysis method for bridges based on modification of modal parameters[J]. Journal of Disaster Prevention and Mitigation Engineering, 2025, 45(2): 384-392.
[20]王晓光,党李涛,马 明.基于振动频率的响应面模型修正稳健估计法[J].公路交通科技,2022,39(2):77-84.
WANG Xiao-guang, DANG Li-tao, MA Ming. A robust estimation method for response surface model updating based on vibration frequency[J]. Journal of Highway and Transportation Research and Development, 2022, 39(2): 77-84.
[21]胡俊亮,颜全胜,郑恒斌,等.基于Kriging模型的钢管混凝土连续梁拱桥有限元模型修正[J].振动与冲击,2014,33(14):33-39.
HU Jun-liang, YAN Quan-sheng, ZHENG Heng-bin, et al. CFST arch/continuous beam bridge FEM model updating based on Kriging model[J]. Journal of Vibration and Shock, 2014, 33(14): 33-39.
[22]周 宇,甘露一,狄生奎,等.基于应变影响线的桥梁模型修正试验[J].浙江大学学报(工学版),2024,58(3):537-546.
ZHOU Yu, GAN Lu-yi, DI Sheng-kui, et al. Bridge model modification experiment based on strain influence line[J]. Journal of Zhejiang University(Engineering Science), 2024, 58(3): 537-546.
[23]方淑君,单交龙,张利勇,等.基于响应面法的钢管混凝土系杆拱桥有限元模型修正[J].铁道科学与工程学报,2024,21(10):4114-4122.
FANG Shu-jun, SHAN Jiao-long, ZHANG Li-yong, et al. Finite element model updating of CFST-tied arch bridge based on response surface method[J]. Journal of Railway Science and Engineering, 2024, 21(10): 4114-4122.
[24]陈志超,柳国环,费琦翔.面向显式算法基于Python语言人工边界与地震力可视化建模程序开发与验证[J].计算力学学报,2025,42(3):386-394.
CHEN Zhi-chao, LIU Guo-huan, FEI Qi-xiang. Development and verification of Python-based and explicit algorithm-oriented modeling program for viscous-spring boundary and seismic force[J]. Chinese Journal of Computational Mechanics, 2025, 42(3): 386-394.
[25]文志彬,罗 毅,吴琴锋,等.基于Dynamo+SAP2000螺旋钢楼梯壳元计算模型参数化建模[J].建筑结构,2023,53(增1):1453-1458.
WEN Zhi-bin, LUO Yi, WU Qin-feng, et al. Parametric modeling of spiral steel stair shell element calculation model based on Dynamo+SAP2000[J]. Building Structure, 2023, 53(S1): 1453-1458.
[26]刘宜丰,李秋稷,刑银行,等.基于GH及SAP2000的超高层结构参数化建模及一体化分析程序的二次开发与应用[J].建筑结构,2021,51(增2):212-216.
LIU Yi-feng, LI Qiu-ji, XING Yin-hang, et al. Secondary development and application of parametric modeling and integrated analysis program for super high rise structure based on GH and SAP2000[J]. Building Structure, 2021, 51(S2): 212-216.
[27]祝 兵,张云鹤,赵雨佳,等.基于BIM技术的桥梁工程参数化智能建模技术[J].桥梁建设,2022,52(2):18-23.
ZHU Bing, ZHANG Yun-he, ZHAO Yu-jia, et al. BIM-based intelligent parametric modeling technology in bridge engineering[J]. Bridge Construction, 2022, 52(2): 18-23.
[28]王龙飞.桥梁混凝土收缩徐变效应时变过程综合仿真[J].公路交通科技,2021,38(2):54-61.
WANG Long-fei. Comprehensive simulation on shrinkage and creep effects of concrete in bridges during time-varying process[J]. Journal of Highway and Transportation Research and Development, 2021, 38(2): 54-61.
[29]周金政,林利民,张聚标.SAP2000API及.NET技术在设备基础快速建模中的应用[J].建筑结构,2013,43(增1):846-849.
ZHOU Jin-zheng, LIN Li-min, ZHANG Ju-biao. Application of SAP2000 API and.NET technology in the rapid modeling of equipment foundation[J]. Building Structure, 2013, 43(S1): 846-849.
[30]JTG/T2231-02—2021,公路桥梁抗震性能评价细则[S].
JTG/T2231-02—2021, guidelines for seismic performance evaluation of highway bridges[S].
[31]李 波,许亚男,严国虔,等.框架结构考虑钢筋腐蚀的地震风险评估方法[J].建筑科学与工程学报,2024,41(5):52-62.
LI Bo, XU Ya-nan, YAN Guo-qian, et al. Seismic risk assessment method for frame structures considering steel corrosion[J]. Journal of Architecture and Civil Engineering, 2024, 41(5): 52-62.
[32]周 敉,李志烜,冯鹏飞.超大跨悬索桥的长周期设计反应谱研究[J].交通运输工程学报,2025,25(3):144-159.
ZHOU Mi, LI Zhi-xuan, FENG Peng-fei. Long-period design response spectrum study of ultra-long-span suspension bridges[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 144-159.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):44.

备注/Memo

备注/Memo:
收稿日期:2025-04-12
基金项目:国家自然科学基金项目(51978062); 陕西省重点研发计划项目(2024SF-YBXM-644); 山西省交通运输科技项目(2021-02-03); 陕西省交通运输科研项目(22-05K); 中央高校基本科研业务费专项资金项目(300102212209)
作者简介:周 敉(1977-),男,陕西商州人,教授,工学博士,E-mail:zhoumi@chd.edu.cn。
更新日期/Last Update: 2025-12-20