[1]王晓全,韩佳鑫,邵春福,等.建成环境影响下网约车和地铁竞合关系分析方法[J].长安大学学报(自然科学版),2025,45(5):200-210.[doi:10.19721/j.cnki.1671-8879.2025.05.017]
 WANG Xiao-quan,HAN Jia-xin,SHAO Chun-fu,et al.An analysis method for competitive-cooperative relationship between ride-hailing and metro considering influence of built environment[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):200-210.[doi:10.19721/j.cnki.1671-8879.2025.05.017]
点击复制

建成环境影响下网约车和地铁竞合关系分析方法()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年5期
页码:
200-210
栏目:
交通工程
出版日期:
2025-09-30

文章信息/Info

Title:
An analysis method for competitive-cooperative relationship between ride-hailing and metro considering influence of built environment
文章编号:
1671-8879(2025)05-0200-11
作者:
王晓全1韩佳鑫1邵春福2尹超英3
(1. 河海大学 土木与交通学院,江苏 南京 210098; 2. 新疆大学 交通运输工程学院,新疆 乌鲁木齐 830017; 3. 南京林业大学 汽车与交通工程学院,江苏 南京 210037)
Author(s):
WANG Xiao-quan1 HAN Jia-xin1 SHAO Chun-fu2 YIN Chao-ying3
(1. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, Jiangsu, China; 2. School of Traffic and Transportation Engineering, Xinjiang University, Urumqi 830017, Xinjiang, China; 3. College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China)
关键词:
交通工程 竞合关系 随机森林 非线性效应 建成环境 贡献度
Keywords:
Key words:traffic engineering competitive-cooperative relationship random forest nonlinear effect built environment contribution
分类号:
U491.1
DOI:
10.19721/j.cnki.1671-8879.2025.05.017
文献标志码:
A
摘要:
为揭示建成环境对网约车和地铁竞合关系的影响机制,提出一种通过构建竞合关系指数量化网约车与地铁站点之间时空交互特征的方法。首先,收集南京市全区域的网约车订单数据并进行数据预处理; 其次,整合多源城市数据,包括兴趣点、平均房价、土地利用混合度、路网密度以及公共交通临近度等建成环境要素,同时基于网约车出行与地铁站点的时空关系识别网约车和地铁之间的竞合关系并量化为竞合关系指数; 最后,采用随机森林机器学习方法分析各类建成环境要素对竞合关系指数的贡献度及其非线性影响特征。研究结果表明:在空间分布特征方面,网约车与地铁间的合作关系呈相对分散的空间格局,竞争关系表现出明显的空间集聚特征,特别是在城市中心区域竞争关系随着与市中心距离的减小而显著增强; 在建成环境要素的贡献度方面,平均房价、商务住宅和交通设施对竞合关系指数表现出较强的解释力,贡献度分别为35.79%、19.85%和9.84%,这3类要素共同构成影响竞合关系的关键因素; 所有建成环境均对网约车与地铁的竞合关系指数表现出非线性效应; 持续增加土地利用混合度或道路密度并不能刺激网约车出行需求,建成环境特征需要在一定区间内才能最大程度地影响网约车的竞争效应。研究结果可为建成环境精细化管理及网约车优化调度提供理论依据。
Abstract:
To reveal the influence mechanism of built environment on thecompetitive-cooperative relationship between ride-hailing and metro, a method was proposedto quantify the spatiotemporal interaction characteristics between ride-hailing and metro stationsby constructing a competitive-cooperative relationship index. First, ride-hailing order data acrossthe entire Nanjing region were collected and preprocessed. Second, multi-source urban data wereintegrated, including built environment elements such as points of interest, house prices, mixedland use, road density, and public transport proximity. Meanwhile, the competitive-cooperativerelationship between ride-hailing and metro was identified based on their spatiotemporalinteraction and quantified as a competitive-cooperative relationship index. Finally, the randomforest method was employed to analyze the relative contribution of various built environmentelements to the index and their nonlinear influence characteristics. The results indicate that, interms of spatial distribution characteristics, the cooperative relationship between ride-hailing and metro exhibits a relatively dispersed spatial pattern, whereas the competitive relationshipdemonstrates significant spatial agglomeration, particularly in urban central areas, where itintensifies markedly with decreasing distance from the city center. Regarding the relativecontribution of built environment elements, house prices, commercial residence, andtransportation facilities exhibit strong explanatory power for the competitive-cooperativerelationship index, with relative contributions of 35.79%, 19.85%, and 9.84%, respectively,collectively constituting the key influencing factors. All built environment elements shownonlinear effects on the competitive-cooperative relationship index. A continuous increase inmixed land use or road density does not stimulate ride-hailing demand; instead, built environmentcharacteristics must fall within a certain range to maximize their impact on the competitive effectof ride-hailing. The findings provide a theoretical basis for the refined management of the builtenvironment and the optimized dispatching of ride-hailing services.4 tabs, 8 figs, 25 refs.

参考文献/References:

[1] HU J W, CREUTZIG F. A systematic review on sharedmobility in China[J]. International journal of sustainabletransportation, 2022, 16(4): 374-389.
[2]RAYLE L, DAI D, CHAN N, et al. Just a better taxi? Asurvey-based comparison of taxis, transit, andridesourcing services in San Francisco[J]. TransportPolicy, 2016, 45: 168-178.
[3]ZHANG Y, ZHANG Y. Exploring the relationship betweenridesharing and public transit use in the United States[J].International journal of environmental research and publichealth, 2018, 15(8): 1763.
[4]YE J, HAO W, BAI J. “Co-opetition” effects ofride-hailing on metro services and its spatially varyingdeterminants: Evidence from Shanghai, China[J].Transportation Research Record, 2024(2678):608-621.
[5]YOUNG M, ALLEN J, FARBER S. Measuring when Uberbehaves as a substitute or supplement to transit: Anexamination of travel-time differences in Toronto[J].Journal of Transport Geography, 2020, 82: 102629.
[6]CUI L, DENG Y, BAI Y, et al. Beyond binary relationship:Multivariant analysis between ride-hailing and publictransit based on multi-sourcing data[J]. Travel Behaviourand Society, 2025, 38: 100876.
[7]LI Z, GAO F, XIAO C, et al. The effects of the urban builtenvironment on public transport ridership: Similaritiesand differences[J]. Travel Behaviour and Society, 2023,33: 100630.
[8]LIU M, LIU Y, YE Y. Nonlinear effects of builtenvironment features on metro ridership: An integratedexploration with machine learning considering spatialheterogeneity[J]. Sustainable Cities and Society, 2023, 95:104613.
[9]HATAMI F, RAHMAN M M, NIKPARVAR B, et al. Non-linearassociations between the urban built environment andcommuting modal split: A random forest approach andSHAP evaluation[J]. IEEE Access, 2023, 11:12649-12662.
[10]KONG H, ZHANG X, ZHAO J. How does ridesourcingsubstitute for public transit? A geospatial perspective inChengdu, China[J]. Journal of Transport Geography,2020, 86: 102769.
[11]QIAO S, YEH A G O. Is ride-hailing competing orcomplementing public transport? A perspective fromaffordability[J]. Transportation Research Part D: Transportand Environment, 2023, 114: 103533.
[12]BI H, YE Z, HU L, et al. Why they don't choose busservice? Understanding special online car-hailingbehavior near bus stops[J]. Transport Policy, 2021, 114:280-297.
[13]CERVERO R, DAY J. Suburbanization and transit-orienteddevelopment in China[J]. Transport policy, 2008, 15(5):315-323.
[14]EWING R, CERVERO R. Travel and the built environment: Ameta-analysis[J]. Journal of the American planningassociation, 2010, 76(3): 265-294.
[15]程小云,张学宇,施 澄,等.基于多源数据的夜间出行需求空间效应及其异质性分析[J].中国公路学报,2021,34(12):288-301.
CHENG Xiao-yun, ZHANG Xue-yu, SHI Cheng, et al.Analysis of spatial effect and lts heterogeneity onnight-time travel based on multisource data[J]. ChinaJournal of Highway and Transport, 2021, 34(12):288-301.
[16]王晓全,邵春福,尹超英,等.考虑空间不确定效应的建成环境对出行频率的影响[J].交通工程,2023,23(6):21-26.
WANG Xiao-quan, SHAO Chun-fu, YIN Chao-ying, et al.Exploring the impacts of built environment on travelfrequency considering spatial uncertainty[J]. Journal ofTransportation Engineering, 2023, 23(6): 21-26.
[17]SUN D, PENG Z R, SHAN X, et al. Development ofweb-based transit trip-planning system based onservice-oriented architecture[J]. Transportation ResearchRecord, 2011(2217): 87-94.
[18]潘恒彦,张文会,梁婷婷,等.基于MIMIC与机器学习的出租车驾驶员交通事故诱因分析[J].吉林大学学报(工学版),2023,53(2):457-467.
PAN Heng-yan, ZHANG Wen-hui, LIANG Ting-ting, et al.Inducement analysis of taxi drivers traffic accidents basedon MlMlC and machine learning[J]. Journal of JilinUniversity(Engineering and Technology Edition), 2023,53(2): 457-467.
[19]许心越,孔庆雪,李建民,等.建成环境对轨道交通客流的时空异质性影响分析[J].交通运输系统工程与信息,2023,23(4):194-202.
XU Xin-yue, KONG Qing-xue, LI Jian-min, et al. Analysisof spatio-temporal heterogeneity impact of builtenvironment on rail transit passenger flow[J]. Journalof Transportation Systems Engineering and InformationTechnology, 2023, 23(4): 194-202.
[20]BI H, YE Z, WANG C, et al. How built environmentimpacts online car-hailing ridership[J]. TransportationResearch Record, 2020(2674): 745-760.
[21]ZHANG X, HUANG B, ZHU S. Spatiotemporal varying effectsof built environment on taxi and ride-hailing ridership inNew York City[J]. ISPRS International Journal ofGeo-Information, 2020, 9(8): 475.
[22]LOA P,HABIB K N. Examining the influence ofattitudinal factors on the use of ride-hailing services inToronto [J]. Transportation Research Part A, 2021, 146: 13-28.
[23]WANG S, NOLAND R B. Variation in ride-hailing trips inChengdu, China[J]. Transportation Research Part D:Transport and Environment, 2021, 90: 102596.
[24]JIN T, CHENG L, ZHANG X, et al. Nonlinear effects of thebuilt environment on metro-integrated ridesourcingusage[J]. Transportation Research Part D: Transport andEnvironment, 2022, 110: 103426.
[25]BI H, YE Z, ZHU H. Examining the nonlinear impacts ofbuilt environment on ridesourcing usage: Focus on thecritical urban sub-regions[J]. Journal of CleanerProduction, 2022, 350: 131314.

相似文献/References:

[1]王建伟,李娉,高洁,等.中国交通运输碳减排区域划分[J].长安大学学报(自然科学版),2012,32(01):0.
[2]李曙光,周庆华.具有破坏排队的离散时间动态网络装载算法[J].长安大学学报(自然科学版),2012,32(01):0.
[3]凌海兰,郗恩崇.基于随机波动条件的公交客运量预测模型[J].长安大学学报(自然科学版),2012,32(01):0.
[4]田娥,肖庆,陆小佳,等.安全驾驶的横向安全预警报警阈值的确定[J].长安大学学报(自然科学版),2012,32(01):0.
[5]侯贻栋,赵炜华,魏 朗,等.驾驶人空间距离判识规律心理学分析[J].长安大学学报(自然科学版),2012,32(03):86.
 HOU Yi-dong,ZHAO Wei-hua,WEI Lang,et al.Analysis on psychology in cognitive distance about drivers[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):86.
[6]赵跃峰,张生瑞,魏 华.隧道群路段运行速度特性分析[J].长安大学学报(自然科学版),2012,32(06):67.
 ZHAO Yue-feng,ZHANG Sheng-rui,WEI hua.Operating speed characteristics of tunnel group section[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):67.
[7]林 杉,许宏科,刘占文.一种高速公路隧道交通流元胞自动机模型[J].长安大学学报(自然科学版),2012,32(06):73.
 LIN Shan,XU Hong-ke,LIU Zhan-wen.One cellular automaton traffic flow model for expressway tunnel[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):73.
[8]刘俊德,徐 兵,梁永东,等.交通事故下高速公路行车安全评估[J].长安大学学报(自然科学版),2012,32(06):78.
 LIU Jun-de,XU bing,LIANG Yong-dong,et al.Traffic safety assessment of expressway in the accident[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):78.
[9]芮海田,吴群琪,赵跃峰,等.公路建设对区域经济发展的影响分析——以陕西省为例[J].长安大学学报(自然科学版),2012,32(06):83.
 RUI Hai-tian,WU Qun-qi,ZHAO Yue-feng,et al.Influence of highway construction on regional economy development——taking Shaanxi as an example[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):83.
[10]彭 辉,续宗芳,韩永启,等.城市群城际运输结构配置客流分担率模型[J].长安大学学报(自然科学版),2012,32(02):91.
 PENG Hui,XU Zong-fang,HAN Yong-qi,et al.Sharing ratios model of passenger flows in intercity transportation structure configuration among urban agglomeration[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):91.

备注/Memo

备注/Memo:
收稿日期:2025-02-24
基金项目:国家自然科学基金项目(52202388,72204114,52072025); 中国博士后科学基金项目(2022M720992,2023M731705); 教育部人文社科青年基金项目(22YJC630191)
作者简介:王晓全(1992-),男,黑龙江哈尔滨人,副教授,工学博士,E-mail:20210046@hhu.edu.cn。
通信作者:尹超英(1989-),女,山西五寨人,副教授,工学博士,E-mail:cyyin@njfu.edu
更新日期/Last Update: 2025-09-30