参考文献/References:
[1] 肖雨晴,杨慧敏.目标检测算法在交通场景中应用综述[J].计算机工程与应用,2021,57(6):30-41.
XIAO Yu-qing, YANG Hui-min. Research on application of object detection algorithm in traffic scene[J]. Computer Engineering and Applications, 2021, 57(6): 30-41.
[2]张凯祥,朱 明.基于YOLOv5的多任务自动驾驶环境感知算法[J].计算机系统应用,2022,31(9):226-232.
ZHANG Kai-xiang, ZHU Ming. Environmental perception algorithm for multi-task autonomous driving based on YOLOv5[J]. Computer Systems and Applications, 2022, 31(9): 226-232.
[3]赵 萍,李 欣,朱少武.基于时空图注意力神经网络的交通道路拥塞和异常预测[J].科学技术与工程,2022,22(3):1271-1278.
ZHAO Ping, LI Xin, ZHU Shao-wu. Traffic road congestion and anomaly prediction based on spatio-temporal graph attention neural networks[J]. Science Technology and Engineering, 2022, 22(3): 1271-1278.
[4]何朋朋.基于深度学习的交通场景多目标检测与分类研究[D].西安:长安大学,2018.
HE Peng-peng. Multi-object detection and classification based on deep learning in traffic scene[D]. Xi'an: Chang'an University, 2018.
[5]杨 康.基于视频的车辆检测理论与方法研究[D].西安:长安大学,2013.
YANG Kang. Research on theory and method of vehicle detection based on images[D]. Xi'an: Chang'an University, 2013.
[6]李永豪.基于YOLOv5s的车辆检测改进算法[D].西安:长安大学,2022.
LI Yong-hao. Improved vehicle detection algorithm based on YOLOv5s[D]. Xi'an: Chang'an University, 2022.
[7]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//LEIBE B, MATAS J, SEBE N, et al. Computer Vision-ECCV 2016, Part Ⅰ. Berlin: Springer, 2016: 21-37.
[8]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). New York: IEEE, 2016: 779-788.
[9]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE. 2014 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). New York: IEEE, 2014: 580-587.
[10]HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[11]GIRSHICK R. Fast R-CNN[C]//IEEE. 2015 IEEE International Conference on Computer Vision(ICCV). New York: IEEE, 2015: 1440-1448.
[12]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]//IEEE. IEEE Transactions on Pattern Analysis and Machine Intelligence. New York: IEEE, 2017: 1137-1149.
[13]REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). New York: IEEE, 2017: 6517-6525.
[14]REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv, 2018, https://arxiv.org/abs/1804.02767.
[15]BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv, 2020, https://arxiv.org/abs/2004.10934.
[16]WANG A, CHEN H, LIU L, et al. YOLOv10: Real-time end-to-end object detection[J]. Advances in Neural Information Processing Systems, 2024, 37: 107984-108011.
[17]KHANAM R, HUSSAIN M. YOLOv11: An overview of the key architectural enhancements[J]. arXiv, 2024, https://arxiv.org/abs/2410.17725.
[18]肖雨晴,杨慧敏.基于改进YOLOv3算法的交通场景目标检测[J].森林工程,2022,38(6):164-171.
XIAO Yu-qing, YANG Hui-min. Object detection based on improved YOLOv3 algorithm in traffic scenes[J]. Forest Engineering, 2022, 38(6): 164-171.
[19]LI Y, LYU C. SS-YOLO: An object detection algorithm based on YOLOv3 and ShuffleNet[C]//XU B, MOU K.Proceedings of 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference(ITNEC 2020). New York: IEEE, 2020: 769-772.
[20]张丽莹,庞春江,王新颖,等.基于改进YOLOv3的多尺度目标检测算法[J].计算机应用,2022,42(8):2423-2431.
ZHANG Li-ying, PANG Chun-jiang, WANG Xin-ying, et al. Multi-scale object detection algorithm based on improved YOLOv3[J]. Journal of Computer Applications, 2022, 42(8): 2423-2431.
[21]宦 海,陈逸飞,张 琳,等.一种改进的BR-YOLOv3目标检测网络[J].计算机工程,2021,47(10):186-193.
HUAN Hai, CHEN Yi-fei, ZHANG Lin, et al. An improved BR-YOLOv3 object detection network[J]. Computer Engineering, 2021, 47(10): 186-193.
[22]朱程铮.高密度交通场景下智能汽车多目标检测与跟踪算法研究[D].镇江:江苏大学,2022.
ZHU Cheng-zheng. Research on multi-target detection and tracking algorithm of intelligent vehicle in high-density traffic scenario[D]. Zhenjiang: Jiangsu University,
2022.
[23]董 想.复杂场景下基于多尺度特征的目标检测算法研究[D].北京:北京交通大学,2022.
DONG Xiang. Research on object detection algorithm based on multi-scale feature in complex scene[D]. Beijing: Beijing Jiaotong University, 2022.
[24]GE Z, LIU S, Wang F, et al. YOLOX: Exceeding YOLO series in 2021[J]. arXiv, 2021, https://arxiv.org/abs/2107.08430.
[25]李明芳. DMP-YOLO:面向自动驾驶的多尺度目标检测算法[J/OL]. 无线电工程,(2025-08-18)[2025-09-15].https://link.cnki.net/urlid/13.1097.TN.20250818.
1352.002.
LI Ming-fang. DMP-YOLO: A multi-scale object detection algorithm for autonomous driving[J]. Radio Engineering,(2025-08-18)[2025-09-15]. https://link.cnki.net/urlid/13.1097.TN.20250818.1352.002.
[26]赵树恩,龚道元,田卓帅.基于改进YOLOv8模型的复杂交通场景目标检测算法[J].重庆交通大学学报(自然科学版),(2025-05-27)[2025-09-15].https://link.cnki.net/urlid/50.1190.U.20250527.1407.004.
ZHAO Shu-en, GONG Dao-yuan, TIAN Zhuo-shuai. Algorithm for object detection in complex traffic scenes based on improved YOLOv8 model[J]. Journal of Chongqing Jiaotong University(Natural Science Edition),(2025-05-27)[2025-09-15]. https://link.cnki.net/urlid/50.1190.U.20250527.1407.004.
[27]黄崇庆,徐慧英,张晓雷,等.BGR-YOLO:基于YOLOv8改进的交通场景下目标检测算法[J].计算机工程与科学,(2025-05-27)[2025-09-15].https://link.cnki.net/urlid/43.1258.TP.20250408.1455.002.
HUANG Chong-qing, XU Hui-ying, ZHANG Xiao-lei, et al. BGR-YOLO: An improved object detection algorithm under traffic scenarios based on YOLOv8[J]. Computer Engineering and Science,(2025-04-08)[2025-09-15]. https://link.cnki.net/urlid/43.1258.TP.20250408.1455.002.
[28]WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[M]//FERRARI V, HEBERT M, SMINCHISESCU C, et al. Computer Vision—ECCV 2018, Part Ⅶ. Berlin: Springer, 2018: 3-19.
[29]LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]//FERRARI V, HEBERT M, SMINCHISESCU C, et al. Computer Vision—ECCV 2018, Part Ⅺ. Berlin: Springer, 2018: 404-419.
[30]周 力,惠 飞,张嘉洋,等.基于RDB-YOLOv5的遥感图像车辆检测[J].长安大学学报(自然科学版),2024,44(3):149-160.
ZHOU Li, HUI Fei, ZHANG Jia-yang, et al. Remote sensing images vehicle detection based on RDB-YOLOv5[J]. Journal of Chang'an University(Natural Science Edition), 2024, 44(3): 149-160.
[31]乔 朋,袁 彪,申迎港,等.基于YOLOv5 DeepSORT和虚拟检测区的车轴时空定位方法[J].长安大学学报(自然科学版),2023,43(3):34-44.
QIAO Peng, YUAN Biao, SHEN Ying-gang, et al. Spatio-temporal axle localization method based on YOLOv5 DeepSORT and virtual detection area[J]. Journal of Chang'an University(Natural Science Edition), 2023, 43(3): 34-44.
[32]SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). New York: IEEE, 2015: 1-9.
[33]GEVORGYAN Z. SIoU loss: More powerful learning for bounding box regression[J]. arXiv, 2022, https://arxiv.org/abs/2205.12740.