参考文献/References:
[1] 黄慧建,范溢峻,苏晗翀,等.高温高湿环境下地铁列车辅助变流器高故障率的设备优化方案[J].城市轨道交通研究,2024,27(9):255-259.
HUANG Hui-jian, FAN Yi-jun, SU Han-chong, et al. Equipment optimization plan for high failure rate of metro train auxiliary converters in high temperature and high humidity environment[J]. Urban Rail Transit Research, 2024, 27(9): 255-259.
[2]张红星,刘 超,宋君君,等.某地铁列车网络系统中继器故障分析及改进[J].铁道机车车辆,2024,44(3):154-158.
ZHANG Hong-xing, LIU Chao, SONG Jun-jun, et al. Fault analysis and improvement of the repeater in a metro train network system[J]. Railway Locomotive & Car, 2024, 44(3): 154-158.
[3]占玉林,李嘉鑫,张秉鹤,等.考虑荷载类型及结构参数的轨道交通U形梁剪力滞效应[J].长安大学学报(自然科学版),2024,44(2):57-67.
ZHAN Yu-lin, LI Jia-xin, ZHANG Bing-he, et al. Shear lag effect of u-shaped beams in urban rail transit considering load types and structural parameters[J]. Journal of Chang'an University(Natural Science Edition), 2024, 44(2): 57-67.
[4]ZHOU Z P, GOH Y M, SHI Q Q, et al. Data-driven determination of collapse accident patterns for the mitigation of safety risks at metro construction sites[J]. Tunnelling and Underground Space Technology, 2022, 127: 1-17.
[5]汪益敏,罗 跃,于 恒,等.人员密集型地铁车站安全风险评价方法[J].交通运输工程学报,2020,20(5):198-207.
WANG Yi-min, LUO Yue, YU Heng, et al. Safety risk assessment method for metro stations with high passenger density[J]. Journal of Transportation Engineering, 2020, 20(5): 198-207.
[6]ZHOU Z P, LIU S, QI H N. Mitigating subway construction collapse risk using Bayesian network modeling[J]. Automation in Construction, 2022, 143: 104541.
[7]QIAO D S, ZHOU X B, YE X J, et al. Security risk assessment of submerged floating tunnel based on fault tree and multistate fuzzy Bayesian network[J]. Ocean and Coastal Management, 2024, 258: 107355.
[8]YANG Y H, LIU Y X, ZHOU M X, et al. Robustness assessment of urban rail transit based on complex network theory: A case study of the Beijing Subway[J]. Safety Science, 2015, 79: 149-162.
[9]ZHANG Y, HAN J Z, LIU J, et al. Safety prediction of rail transit system based on deep learning[C]//IEEE.2017 IEEE/ACIS 16th International Conference on Computer and Information Science(ICIS). New York: IEEE, 2017: 851-856.
[10]SHUN W, LV Y M,YUAN P, et al. Metro traffic flow prediction via knowledge graph and spatiotemporal graph neural network[J]. Journal of Advanced Transportation, 2022, 2022: 1-13.
[11]CHI H N, WANG B Y, GE Q B, et al. Knowledge graph-based enhanced transformer for metro individual travel destination prediction[J]. Journal of Advanced Transportation, 2022, 2022: 1-9.
[12]唐伟文,郭晟楠,陈 炜,等.融合时序知识图谱的路段级交通事故风险预测[J].模式识别与人工智能,2023,36(8):721-732.
TANG Wei-wen, GUO Sheng-nan, CHEN Wei, et al. Section-level traffic accident risk prediction with temporal knowledge graph fusion[J]. Pattern Recognition and Artificial Intelligence, 2023, 36(8): 721-732.
[13]齐如煜,尹章才,顾江岩,等.高精地图的知识图谱表达[J].武汉大学学报(信息科学版),2024,49(4):651-661.
QI Ru-yu, YIN Zhang-cai, GU Jiang-yan, et al. Knowledge graph representation of high-precision maps[J]. Geomatics and Information Science of Wuhan University, 2024, 49(4): 651-661.
[14]毛慧慧,赵小乐,杜圣东,等.基于时序知识图谱嵌入的短期地铁客流量预测[J].计算机科学,2023,50(7):213-220.
MAO H H, ZHAO X L, DU S D, et al. Short-term metro passenger flow prediction based on temporal knowledge graph embedding[J]. Computer Science, 2023, 50(7): 213-220.
[15]TANG J J, ZHANG J H, JIN J C, et al. Knowledge science, engineering and management[M]. Cham: Springer Nature Switzerland, 2023.
[16]XIU C, SUN Y C, PENG Q Y. Modelling traffic as multi-graph signals: Using domain knowledge to enhance the network-level passenger flow prediction in metro systems[J]. Journal of Rail Transport Planning & Amp; Management, 2022, 24: 100342.
[17]ZENG J, TANG J J. Combining knowledge graph into metro passenger flow prediction: A split-attention relational graph convolutional network[J]. Expert Systems with Applications, 2023, 213: 118790.
[18]WANG S, LV Y M, PENG Y, et al. Metro traffic flow prediction via knowledge graph and spatiotemporal graph neural network[J]. Journal of Advanced Transportation, 2022, 2022: 1-13.
[19]ZENG J, TANG J J. Combining knowledge graph into metro passenger flow prediction: A split-attention relational graph convolutional network[J]. Expert Systems with Applications, 2023, 213: 118790.
[20]林海香,胡娜娜,何 乔,等.基于建筑信息模型数据驱动的铁路设备运维多模态知识图谱构建[J].同济大学学报(自然科学版),2024,52(2):166-173.
LIN Hai-xiang, HU Na-na, HE Qiao, et al. Construction of multi-modal knowledge graph for railway equipment operation and maintenance based on building information modeling data[J]. Journal of Tongji University(Natural Sciences), 2024, 52(2): 166-173.
[21]CHEN F, YAN H, MA X P, et al. Construction and application of knowledge graph for urban rail fire accident[M]. Singapore: Springer Singapore, 2022.
[22]DIAO X R, WANG Y H, SUN W H, et al. Proceedings of the 6th international conference on electrical engineering and information technologies for rail transportation(EITRT)2023[M]. Singapore: Springer Nature Singapore, 2024.
[23]LIU Zi-yu, LI Ying, ZHAO Li-xia, et al. Construction of intelligent query system for metro electromechanical equipment faults based on the knowledge graph[J]. Journal of Intelligent & Amp, Fuzzy Systems, 2021, 41: 4351-4368.
[24]ZENG Y, QIN Y, LIU D, et al. Railway train device fault causality model based on knowledge graph[C]//IEEE. 2020 International Conference on Sensing, Diagnostics, Prognostics, and Control(SDPC). New York: IEEE, 2020: 1-8.
[25]LIU C,YANG S W. Using text mining to establish knowledge graph from accident/incident reports in risk assessment[J]. Expert Systems with Applications, 2022, 207: 117991.
[26]许 慧,李树秀,邢 镔.基于知识图谱的轨道交通运营风险事件智能分析研究[J].铁道标准设计,2024,68(8):34-42,49.
XU Hui, LI Shu-xiu, XING Bin. Intelligent analysis of urban rail transit operation risk events based on knowledge graph[J]. Railway Standard Design, 2024, 68(8): 34-42, 49.
[27]朱广宇,张 萌,裔 扬.基于知识图谱的城市轨道交通突发事件演化结果预测[J].电子与信息学报,2023,45(3):949-957.
ZHU Guang-yu, ZHANG Meng, YI Yang. Prediction of evolutionary outcomes of urban rail transit emergency events based on knowledge graph[J]. Journal of Electronics & Information Technology, 2023, 45(3): 949-957.
[28]HUO X,YIN Y,JIAO L D, et al. A data-driven and knowledge graph-based analysis of the risk hazard coupling mechanism in subway construction accidents[J]. Reliability Engineering & Amp, System Safety, 2024, 250: 110254.
[29]罗 丽.地铁运营安全事故知识图谱的构建及分析[D].北京:中国矿业大学,2022.
LUO Li. Construction and analysis of knowledge graph for metro operation safety accidents[D]. Beijing: China University of Mining and Technology, 2022.
[30]OLIAEE A H, DAS S, LIU J L, et al. Using bidirectional encoder representations from transformers(BERT)to classify traffic crash severity types[J]. Natural Language Processing Journal, 2023, 3: 100007.
[31]WANG YC. A Chinese text classification model based on XLNet and BiGRU[C]//IEEE. 2024 7th International Conference on Advanced Algorithms and Control Engineering(ICAACE). New York: IEEE, 2024: 337-341.
[32]RAHIM M A, RAHMAN M, ISLAM S, et al. Deep learning-based vehicular engine health monitoring system utilising a hybrid convolutional neural network/bidirectional gated recurrent unit[J]. Expert Systems with Applications, 2024, 257: 125080.
[33]刘建伟,刘俊文,罗雄麟.深度学习中注意力机制研究进展[J].工程科学学报,2021,43(11):1499-1511.
LIU Jian-wei, LIU Jun-wen, LUO Xiong-lin. Research progress of attention mechanism in deep learning[J]. Chinese Journal of Engineering Science, 2021, 43(11): 1499-1511.
[34]CUI Y M, ZHAO M. PERT: Pre-training BERT with permuted language model[EB/OL].[2025-09-04]. https://arxiv.org/abs/2203.06906.pdf.
[35]VASWANI, ASHISH, SHAZEER, et al. Attention is all you need[EB/OL]. [2025-09-04]. https://doi.org/10.48550/arXiv.1706.03762.
[36]朱 媛.基于多任务学习的序列标注式因果关系抽取[D].长春:吉林大学,2022.
ZHU Yuan. Causal relation extraction via sequence labeling based on multi-task learning[D]. Changchun: Jilin University, 2022.
相似文献/References:
[1]王建伟,李娉,高洁,等.中国交通运输碳减排区域划分[J].长安大学学报(自然科学版),2012,32(01):0.
[2]李曙光,周庆华.具有破坏排队的离散时间动态网络装载算法[J].长安大学学报(自然科学版),2012,32(01):0.
[3]凌海兰,郗恩崇.基于随机波动条件的公交客运量预测模型[J].长安大学学报(自然科学版),2012,32(01):0.
[4]田娥,肖庆,陆小佳,等.安全驾驶的横向安全预警报警阈值的确定[J].长安大学学报(自然科学版),2012,32(01):0.
[5]侯贻栋,赵炜华,魏 朗,等.驾驶人空间距离判识规律心理学分析[J].长安大学学报(自然科学版),2012,32(03):86.
HOU Yi-dong,ZHAO Wei-hua,WEI Lang,et al.Analysis on psychology in cognitive distance about drivers[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):86.
[6]赵跃峰,张生瑞,魏 华.隧道群路段运行速度特性分析[J].长安大学学报(自然科学版),2012,32(06):67.
ZHAO Yue-feng,ZHANG Sheng-rui,WEI hua.Operating speed characteristics of tunnel group section[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):67.
[7]林 杉,许宏科,刘占文.一种高速公路隧道交通流元胞自动机模型[J].长安大学学报(自然科学版),2012,32(06):73.
LIN Shan,XU Hong-ke,LIU Zhan-wen.One cellular automaton traffic flow model for expressway tunnel[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):73.
[8]刘俊德,徐 兵,梁永东,等.交通事故下高速公路行车安全评估[J].长安大学学报(自然科学版),2012,32(06):78.
LIU Jun-de,XU bing,LIANG Yong-dong,et al.Traffic safety assessment of expressway in the accident[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):78.
[9]芮海田,吴群琪,赵跃峰,等.公路建设对区域经济发展的影响分析——以陕西省为例[J].长安大学学报(自然科学版),2012,32(06):83.
RUI Hai-tian,WU Qun-qi,ZHAO Yue-feng,et al.Influence of highway construction on regional economy
development——taking Shaanxi as an example[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):83.
[10]彭 辉,续宗芳,韩永启,等.城市群城际运输结构配置客流分担率模型[J].长安大学学报(自然科学版),2012,32(02):91.
PENG Hui,XU Zong-fang,HAN Yong-qi,et al.Sharing ratios model of passenger flows in intercity transportation
structure configuration among urban agglomeration[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):91.