[1]陈君,李广伟,王春,等.基于多源数据的公交出行时间影响因素研究[J].长安大学学报(自然科学版),2025,45(5):152-162.[doi:10.19721/j.cnki.1671-8879.2025.05.013]
 CHEN Jun,LI Guang-wei,WANG Chun,et al.Exploring on influencing factors of bus travel time based on muti-source data[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):152-162.[doi:10.19721/j.cnki.1671-8879.2025.05.013]
点击复制

基于多源数据的公交出行时间影响因素研究()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年5期
页码:
152-162
栏目:
交通工程
出版日期:
2025-09-30

文章信息/Info

Title:
Exploring on influencing factors of bus travel time based on muti-source data
文章编号:
1671-8879(2025)05-0152-11
作者:
陈君李广伟王春李晓伟
(西安建筑科技大学 城市发展与现代交通学院,陕西 西安 710055)
Author(s):
CHEN Jun LI Guang-wei WANG Chun LI Xiao-wei
(College of Urban Development and Modern Transportation, Xi'an University of Architecture and Technology,Xi'an 710055, Shaanxi, China)
关键词:
交通工程 公交出行时间 多元回归分析 影响因素 智能公交系统 多源数据
Keywords:
traffic engineering bus travel time multiple regression analysis influencing factors advanced public transportation system muti-source data
分类号:
U491.17
DOI:
10.19721/j.cnki.1671-8879.2025.05.013
文献标志码:
A
摘要:
为了探索公交出行时间(BTT)的影响因素及其效应,利用智能公交系统数据获取个体公交乘客的出行OD和出行时间,并集成天气、兴趣点、城市路网等多源数据,构建涵盖公交出行时空特征、公交线路属性、建成环境特征以及天气条件的BTT多元回归模型,分析了各影响因素对BTT的单一效应和交互效应。研究结果表明:正向影响BTT的主要因素按重要性由大到小排序依次为停站次数、起点商业类兴趣点(POI)数量、傍晚时段、起点用地多样性、出行距离、信号交叉口个数、早晨时段、路侧住宅类POI数量、休息日、中雨等; 起点住宅类POI数量和起点道路网密度对BTT有负向影响; 实践中应首先考虑通过优化站点设置、减少停站次数、压缩停站时间等措施缩短BTT; 在未设置公交专用道的条件下,主干路长度对BTT有递增的边际效应; 出行时间、天气条件等因素对BTT的影响存在显著的异质性; 工作日早晨时段对BTT的影响为正,而休息日早晨的影响为负; 相较于工作日,休息日路侧住宅类POI数量对BTT的影响程度更弱; 非早晚时段相比傍晚时段,信号交叉口数量对BTT的影响更为显著; 中雨相较于其他天气条件,出行距离对BTT的影响更强,而停站次数对BTT的影响更弱。研究结果能够为公交导向的城市规划、公交系统优化和管理决策提供参考依据。
Abstract:
To explore influencing factors and their effects on bus travel time(BTT), travel origin-destination andtravel time of individual passengers were obtained using advanced public transportation system data. Byintegrating multi-source data of weather, point of interest, and urban road network, the multiple regression model forBTT was established considering four categories of factors: bus travel temporal and spatial characteristics, bus routeattributes, built environment features, and weather conditions. This model was applied to analyze the single andinteractive effects of various influencing factors on BTT.The results indicate that the primary factors positivelyaffecting BTT, in order of importance, are:the number of bus stops, the number of commercial POI at the origin,evening hours, diversity of land use at the origin, travel distance, the number of signalized intersections, morninghours, the number of residential POIs along the route, weekends, and moderate rain. Conversely, the number of residential POIs at the origin and the density of road network at the origin have negative influence. In practice, itshould be primarily considered to optimize the bus stops setting and reduce the number of stops and the dwelling time toshorten BTT. While exclusive bus lanes are absent, the length of arterial road has increasing marginal effect on BTT.There is significant heterogeneity in the influencing factors such as travel time and weather conditions on BTT.Morning hours have a positive effect on BTT during weekdays but a negative effect on weekends. Compared toweekdays, the influence of the number of residential POIs along the route on BTT is weaker on weekends. Theimpact of the number of signalized intersections on BTT is more significant during non-morning-or -evening hourscompared to evening hours. In moderate rain weather condition, travel distance has a stronger influence on BTTcompared to other weather conditions, while the number of stops has a weaker impact. The conclusions of this studycan serve as a reference for transit-oriented urban planning, bus system optimization, and management decisions.5 tabs, 1 fig, 28 refs.

参考文献/References:

[1] SOZA-PARRA J, RAVEAU S, MUÑOZ J C. Public transport reliability across preferences, modes, and space[J]. Transportation, 2022, 49(2): 621-640.
[2]王殿海,汤月华,陈 茜,等.基于GPS数据的公交站点区间行程时间可靠性影响因素[J].东南大学学报(自然科学版),2015,45(2):404-412.
WANG Dian-hai, TANG Yue-hua, CHEN Qian, et al. Factors affecting the reliability of bus travel time between bus stops based on GPS data[J]. Journal of Southeast University(Natural Science Edition), 2015, 45(2): 404-412.
[3]GONG X, GUO X, DOU X, et al. Bus travel time deviation analysis using automatic vehicle location data and structuralequation modeling[J]. Mathematical Problems in Engineering, 2015: 410234.
[4]ABKOWITZ M D, ENGELSTEIN I. Factors affecting running time on transit routes[J]. Transportation Research Part A:Policy and Practice, 1983, 17(2): 107-113.
[5]MAZLOUMI E, ASCE S M, CURRIE G, et al. Using GPS data to gain insight into public transport travel time variability[J].Journal of Transportation Engineering, 2010, 136: 623-631.
[6]MA Z L, FERREIRA L, MESBAH M, et al. Modeling bus travel time reliability with supply and demand data from automaticvehicle location and smart card systems[J]. Transportation Research Record, 2015, 2533: 17-27.
[7]YAN W, YAO H, CHEN L, et al. Impacts of school reopening on variations in local bus performance in Sydney[J].Transportation Research Record, 2021, 2675(9): 1277-1289.
[8]JENELIUS E. Public transport experienced service reliability: Integrating travel time and travel conditions[J]. TransportationResearch Part A: Policy and Practice, 2018, 117: 275-291.
[9]张 琦,陈 红,刘至真,等.降雨量对OD行程时间可靠性影响分析[J].交通运输系统工程与信息,2019,19(6):243-249.
ZHANG Qi, CHEN Hong, LIU Zhi-zhen, et al. Analysis of the influence of rainfall on OD travel time reliability[J]. TransportationSystems Engineering and Information, 2019, 19(6): 243-249.
[10]HOFMANN M, O'MAHONY M. The impact of adverse weather conditions on urban bus performance measures.[C]//IEEE. Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2005.
[11]罗 霞,高 源,刘硕智,等.基于AVL数据的公交运行可靠性评价及影响因素分析[J].计算机应用研究,2017,34(10):2960-2963.
LUO Xia, GAO Yuan, LIU Shuo-zhi, et al. Evaluation of bus operation reliability and analysis of influencing factors based onAVL data[J]. Computer Application Research, 2017, 34(10): 2960-2963.
[12]王 玲,王艳丽,戚新洲,等.基于GPS的常规公交行程时间可靠性因素分析[J].武汉理工大学学报(交通科学与工程版),2022,46(1):1-5.
WANG Ling, WANG Yan-li, QI Xin-zhou, et al. Analysis of reliability factors of bus travel time based on GPS[J]. Journal ofWuhan University of Technology(Traffic Science and Engineering Edition), 2022, 46(1): 1-5.
[13]YETISKUL E, SENBIL M. Public bus transit travel-time variability in Ankara(Turkey)[J]. Transport Policy, 2012, 23: 50-59.
[14]LI X, SHI L, LI H, et al. What affects bus passengers' travel time? A view from the built environment and weather condition[J]. Journal of Advanced Transportation, 2023:6629507.
[15]DAI Z, MA X, CHEN X. Bus travel time modelling using GPS probe and smart card data: A probabilistic approachconsidering link travel time and station dwell time[J]. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2019, 23(2): 175-190.
[16]CATS O. Determinants of bus riding time deviations: relationship between driving patterns and transit performance[J].Journal of Transportation Engineering, Part A: Systems, 2019, 145(1): 04018078.
[17]王建军,王 赛,宋明洋,等.大数据背景下城市建成环境对出行行为影响研究综述[J].长安大学学报:自然科学版,2022,42(1):61-78.
WANG Jian-jun, WANG Sai, SONG Ming-yang, et al. A review on the impact of urban built environment on travel behavior in thecontext of big data[J]. Journal of Chang'an University: Natural Science Edition, 2022, 42(1): 61-78.
[18]陈 君,李睿智,田朝军,等.公交出行时空模式的影响因素和效应研究[J].交通运输工程与信息学报,2023,21(4):35-46.
CHEN Jun, LI Rui-zhi, TIAN Chao-jun, et al. Exploring influencing factors and effects on spatio-temporal patterns of bus travel[J]. Journal of Transportation Engineering and Information, 2023,21(4): 35-46.
[19]谢 宇.回归分析[M].北京:社会科学文献出版社,2013.
XIE Yu. Regression analysis[M]. Beijing: Social Sciences Academic Press, 2013.
[20]CHEPURI A, RAMAKRISHNAN J, ARKATKAR S, et al. Examining travel time reliability-based performance indicators for bus routes using GPS-based bus trajectory data in India[J]. Journal of Transportation Engineering, Part A: Systems, 2018, 144(5): 04018012.
[21]WOOLDRIDGE J M.计量经济学导论:现代观点[M].第5版.北京:中国人民大学出版社,2015.
WOOLDRIDGE J M. Introductory econometrics: A modern approach[M]. 5th edt. Beijing: China Renmin University Press,2015.
[22]陈 君,杨东援.基于智能调度数据的公交IC卡乘客上车站点判断方法[J].交通运输系统工程与信息,2013,13(1):76-80.
CHEN Jun, YANG Dong-yuan. Judgment method of bus IC card passenger boarding station based on intelligent scheduling data[J]. Transportation Systems Engineering and Information, 2013(1): 76-80.
[23]BARRY J J, NEWHOUSER R, RAHBEE A, et al. Origin and destination estimation in New York City with automated fare system data[J]. Transportation Research Record, 2002, 1817: 183-187.
[24]赵丽元,王书贤,韦佳伶.基于IC卡数据的建成环境与公交出行率关系研究[J].交通运输系统工程与信息,2019,19(4):233-238.
ZHAO Li-yuan, WANG Shu-xian, WEI Jia-ling. Study on the relationship between built environment and bus travel rate basedon IC card data[J]. Transportation Systems Engineering and Information, 2019, 19(4): 233-238.
[25]CHAKOUR V, ELURU N. Examining the influence of stop level infrastructure and built environment on bus ridership in montreal[J]. Journal of Transport Geography, 2016, 51: 205-217.
[26]龚大鹏,宋国华,黎 明,等.降雨对城市道路行程速度的影响[J].交通运输系统工程与信息,2015,15(1):218-225.
GONG Da-peng, SONG Guo-hua, LI Ming, et al. The effect of rainfall on urban road travel speed[J]. Transportation SystemsEngineering and Information, 2015, 15(1): 218-225.
[27]崔海蓉,费金峰,田 华,等.基于k-means-RM的气象条件对交通阻断的影响评估[J].公路,2021(11):227-233.
CUI Hai-rong, FEI Jin-feng, TIAN Hua, et al. Impact assessment of meteorological conditions on traffic interruption based on k-means-RM[J]. Highway, 2021(11): 227-233.
[28]冯国强,李 菁,武卓尔,等.道路交通拥堵与城市雾霾污染的关系研究[J].中国人口·资源与环境,2020,30(3):93-99.
FENG Guo-qiang, LI Jing, WU Zhuo-er, et al. Study on the relationship between road traffic congestion and urban haze pollution[J]. China's Population, Resources and Environment, 2020, 30(3): 93-99.

相似文献/References:

[1]王建伟,李娉,高洁,等.中国交通运输碳减排区域划分[J].长安大学学报(自然科学版),2012,32(01):0.
[2]李曙光,周庆华.具有破坏排队的离散时间动态网络装载算法[J].长安大学学报(自然科学版),2012,32(01):0.
[3]凌海兰,郗恩崇.基于随机波动条件的公交客运量预测模型[J].长安大学学报(自然科学版),2012,32(01):0.
[4]田娥,肖庆,陆小佳,等.安全驾驶的横向安全预警报警阈值的确定[J].长安大学学报(自然科学版),2012,32(01):0.
[5]侯贻栋,赵炜华,魏 朗,等.驾驶人空间距离判识规律心理学分析[J].长安大学学报(自然科学版),2012,32(03):86.
 HOU Yi-dong,ZHAO Wei-hua,WEI Lang,et al.Analysis on psychology in cognitive distance about drivers[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):86.
[6]赵跃峰,张生瑞,魏 华.隧道群路段运行速度特性分析[J].长安大学学报(自然科学版),2012,32(06):67.
 ZHAO Yue-feng,ZHANG Sheng-rui,WEI hua.Operating speed characteristics of tunnel group section[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):67.
[7]林 杉,许宏科,刘占文.一种高速公路隧道交通流元胞自动机模型[J].长安大学学报(自然科学版),2012,32(06):73.
 LIN Shan,XU Hong-ke,LIU Zhan-wen.One cellular automaton traffic flow model for expressway tunnel[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):73.
[8]刘俊德,徐 兵,梁永东,等.交通事故下高速公路行车安全评估[J].长安大学学报(自然科学版),2012,32(06):78.
 LIU Jun-de,XU bing,LIANG Yong-dong,et al.Traffic safety assessment of expressway in the accident[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):78.
[9]芮海田,吴群琪,赵跃峰,等.公路建设对区域经济发展的影响分析——以陕西省为例[J].长安大学学报(自然科学版),2012,32(06):83.
 RUI Hai-tian,WU Qun-qi,ZHAO Yue-feng,et al.Influence of highway construction on regional economy development——taking Shaanxi as an example[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):83.
[10]彭 辉,续宗芳,韩永启,等.城市群城际运输结构配置客流分担率模型[J].长安大学学报(自然科学版),2012,32(02):91.
 PENG Hui,XU Zong-fang,HAN Yong-qi,et al.Sharing ratios model of passenger flows in intercity transportation structure configuration among urban agglomeration[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):91.

备注/Memo

备注/Memo:
收稿日期:2025-01-31
基金项目:国家自然科学基金项目(52472367); 陕西省自然科学基础研究计划项目(2025JC-YBMS-450)
作者简介:陈 君(1977-),男,陕西平利人,教授,工学博士,E-mail:chenjuntom@126.com。
通信作者:李晓伟(1985-),男,河南信阳人,副教授,工学博士,E-mail:lixiaowei@xauat.edu.cn。
更新日期/Last Update: 2025-09-30