[1]徐先峰,白新禾,王俊哲,等.港口泊位分配与微电网能量调度联合优化方法[J].长安大学学报(自然科学版),2025,45(5):140-151.[doi:10.19721/j.cnki.1671-8879.2025.05.012]
 XU Xian-feng,BAI Xin-he,WANG Jun-zhe,et al.Joint optimization method of berth allocation and microgrid energy scheduling at port[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):140-151.[doi:10.19721/j.cnki.1671-8879.2025.05.012]
点击复制

港口泊位分配与微电网能量调度联合优化方法()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年5期
页码:
140-151
栏目:
交通工程
出版日期:
2025-09-30

文章信息/Info

Title:
Joint optimization method of berth allocation and microgrid energy scheduling at port
文章编号:
1671-8879(2025)05-0140-12
作者:
徐先峰白新禾王俊哲卢勇李陇杰鲁婉琪李芷菡
(长安大学 能源与电气工程学院,陕西 西安 710064)
Author(s):
XU Xian-feng BAI Xin-he WANG Jun-zhe LU Yong LI Long-jie LU Wan-qi LI Zhi-han
(School of Energy and Electrical Engineering, Chang'an University, Xi'an 710064, Shaanxi, China)
关键词:
交通工程 能量调度 蜣螂算法 港口微电网 泊位分配
Keywords:
traffic engineering energy scheduling dung beetle algorithm port microgrid berth allocation
分类号:
U691
DOI:
10.19721/j.cnki.1671-8879.2025.05.012
文献标志码:
A
摘要:
港口能源系统与物流系统的联系愈加紧密,提出一种基于改进蜣螂算法,对泊位分配与微电网能量调度进行联合优化,旨在提升港口运作的效率和经济性。针对现有研究中常忽视船舶等待时长的问题,在目标函数中考虑船舶等待与停泊期间产生的物流成本约束,在优化泊位资源的同时,提高船舶靠港效率。考虑到泊位分配对负荷在时间与空间上的影响,联合优化方法引入电网分时电价机制,协调负荷波动,实现削峰填谷。为提升优化效果,对传统蜣螂算法进行改进,结合Levy飞行策略、T分布扰动与灰狼捕食机制,在提高全局寻优能力的同时加快算法的收敛速度。以天津某港口为案例进行建模分析,通过设置3种典型方案进行优化结果对比。研究结果表明:联合优化方法的总运行成本相较于不含能量调度的方案1降低了8.02%,较独立泊位优化的方案2降低了9.73%; 联合优化方法引入增加船舶等待时长,使负荷调控能力与能量经济性表现更为突出,显示出良好的整体成本控制效果; 该联合优化方法将泊位计划与微电网调度相结合,有助于在保障港口运行效率的基础上,提升能源利用的协调性与经济性,为港口运行成本的优化提供可行方案。
Abstract:
The connection between port energy system and logistics system is becoming increasingly close. This article proposed a joint optimization of berth allocation and microgrid energy scheduling based on an improved beetle algorithm, aiming to improve the efficiency and economy of port operation. In response to the issue that ship waiting time often overlooked in existing research, this paper considers the logistics cost constraints generated during ship waiting and berthing in the objective function, thereby optimizing berth resources while improving ship berthing efficiency. Considering the impact of berth allocation on load in time and space, the model also introduced a time of use electricity pricing mechanism to coordinate load fluctuation and achieve peak shaving and valley filling. To improve the optimization effect, this article improved the traditional beetle algorithm by combining Levy flight strategy, T-distribution perturbation, and grey wolf predation mechanism, which not only enhances the global optimization ability but also accelerates the convergence speed of the algorithm. Taking a port in Tianjin as a case study, modeling analysis was conducted by comparing three typical schemes. The results show that the total operating cost of the scheme by the joint optimization method reduces by 8.02% compared to Scheme 1 without energy scheduling, and by 9.73% compared to Scheme 2 with independent berth optimization. The introduction of joint optimization method increases the waiting time of ships, making the load regulation capability and energy economy performance more prominent, demonstrating a good overall cost control effect. This joint scheduling model combines berth planning with microgrid scheduling, which helps to improve the coordination and economy of energy utilization resulting in ensuring the efficiency of port operation, and provides a feasible solution for optimizing port operating cost.5 tabs, 14 figs, 24 refs.

参考文献/References:

[1] SMITH T, JALKANEN J P, ANDERSON B A, et al. Third IMO Greenhouse Gas Study 2014[C]// International Maritime Organization(IMO). London: IMO, 2015: 327.
[2]邰能灵,王萧博,黄文焘,等.港口综合能源系统低碳化技术综述[J].电网技术,2022,46(10):3749-3764.
TAI Neng-ling, WANG Xiao-bo, HUANG Wen-tao. Review of low-carbon technology for integrated port energy systems[J]. Power System Technology, 2022, 46(10): 3749-3764.
[3]郑建风,王鑫珏,刘惠斌.混合泊位分配与专用泊位租赁的联合优化研究[J].交通运输系统工程与信息,2024,24(1):262-271.
ZHENG Jian-feng, WANG Xin-yu, LIU Hui-bing. Joint optimization of mixed berth allocation and leasing of dedicated berths[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(1): 262-271.
[4]李 斌,唐志斌.基于计算物流和群集智能的多集装箱码头泊位分配[J].计算机工程与应用,2023,59(16):262-284.
LI Bin, TANG Zhi-bin. Multi-container terminal berth allocation based on computational logistics and swarm intelligence[J]. Computer Engineering and Applications, 2023, 59(16): 262-284.
[5]FANG S, WANG Y, GOU B, et al. Toward future green maritime transportation: an overview of seaport microgrids and all-electric ships[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1):207-219.
[6]AHAMAD N B, OTHMAN M, VASQUEZ J C, et al. Optimal sizing and performance evaluation of a renewable energy based microgrid in future seaports[C]//IEEE. 2018 IEEE International Conference on Industrial Technology(ICIT). New York: IEEE, 2018: 1043-1048.
[7]RAHMANI R, MOSER I, CRICENTI A L. Modelling and optimization of microgrid configuration for green data centres: A metaheuristic approach[J]. Future Generation Computer Systems, 2020, 108:742-750.
[8]KACZOROWSKA D, REZMER J. Particle swarm algorithm for microgrid optimization[C]//IEEE. 2018 Innovative Materials and Technologies in Electrical Engineering(i-MITEL). New York: IEEE, 2018: 1-4.
[9]常潇续,曾宪文.基于改进蜣螂算法的微电网优化调度研究[J].电工技术,2024(5):33-38.
CHANG Xiao-xu, ZENG Xian-wen. Optimal schedulingof microgrid based on improved dung beetle optimization algorithm[J]. Electric Engineering, 2024(5): 33-38.
[10]ZHANG Y, LIANG C J, SHI J, et al. Optimal port microgrid scheduling incorporating onshore power supply and berth allocation under uncertainty[J]. Applied Energy, 2022, 313:118856.
[11]王 玮,张晓晴,苏 粟,等.基于模型预测控制的含岸电混合能源系统优化运行[J].电力自动化设备,2021,41(11):17-24.
WANG Wei, ZHANG Xiao-qing, SU Li, et al. Optimal operation of hybrid energy system considering cold ironing based on model predictive control[J]. Electric Power Automation Equipment, 2021, 41(11): 17-24.
[12]李立钦,石庆鑫,王月汉,等.计及高阶方程分段线性化的港口电-氢综合能源系统优化调度[J].电力自动化设备,2023,43(12):21-28.
LI Li-qin, SHI Qin-xin, WANG Yue-han, et al. Optimal scheduling of electricity-hydrogen integrated port energy system considering piecewise linearization of high order equations[J]. Electric Power Automation Equipment, 2023, 43(12): 21-28.
[13]KONSTANTINIDIS G, ALEXANDROS P, KARAPIDAKIS E. An optimal scheduling tool for the realization of onshore power supply at seaports with limited power supply from the distribution grid[C]//IEEE. 2023 IEEE Belgrade Power Tech. New York: IEEE, 2023: 1-5.
[14]黄逸文,黄文焘,卫 卫,等.大型海港综合能源系统物流-能量协同优化调度方法[J].中国电机工程学报,2022,42(17):6184-6196.
HUANG Yi-wen, HUANG Wen-tao, WEI Wei, et al. Logistics-energy collaborative optimization scheduling method for large seaport integrated energy system[J]. Proceedings of the CSEE, 2022, 42(17): 6184-6196.
[15]LI Y, SUN K, YAO Q, et al. A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm[J]. Energy, 2024, 286: 129604.
[16]LU X, HE G. QPSO algorithm based on Lévy flight and its application in fuzzy portfolio[J]. Applied soft computing, 2021, 99: 106894.
[17]ZHANG H, HUANG Q, MA L, et al. Sparrow search algorithm with adaptive T distribution for multi-objective low-carbon multimodal transportation planning problem with fuzzy demand and fuzzy time[J].Expert Systems with Applications, 2024, 238: 122042.
[18]李云淏,咸日常,张海强,等.基于改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障诊断方法[J].电网技术,2023,47(4):1470-1478.
LI Yun-hao, XIAN Ri-chang, ZHANG Hai-qiang, et al. Fault diagnosis for power transformers based on improved grey wolf algorithm coupled with least squares support vector machine[J]. Power System Technology, 2023, 47(4): 1470-1478.
[19]杨宇伦,凌 铭.基于改进鸡群优化算法的质子交换膜燃料电池模型参数辨识[J].太阳能学报,2023,44(2):269-278.
YANG Yu-lun, LING Ming. Parameter identification of proton exchange membrane fuel cells model based on improved chickens warm optimization algorithm[J]. Acta Energiaesolaris Sinica, 2023, 44(2): 269-278.
[20]YUAN R X, LENG C C, ZHANG S, et al. Bayesian non-negative matrix factorization with Student's T-distribution for outlier removal and data clustering[J]. Engineering Applications of Artificial Intelligence, 2024, 132: 107978.
[21]TAKUYA M, MICHIHARU M. Grey wolf optimization with momentum for function optimization[J]. Artif Life Robotics 2021, 26: 304-311.
[22]XUE J, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[23]MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[24]赵 超,付 斌,林 立.基于改进樽海鞘算法的含电动汽车微电网经济优化调度[J].控制理论与应用,2025,42(1):167-180.
ZHAO Chao, FU Bin, LIN Li. Economic dispatch of microgrid with electric vehicles based on improved slap swarm algorithm[J]. Control Theory & Applications, 2025, 42(1): 167-180.

相似文献/References:

[1]王建伟,李娉,高洁,等.中国交通运输碳减排区域划分[J].长安大学学报(自然科学版),2012,32(01):0.
[2]李曙光,周庆华.具有破坏排队的离散时间动态网络装载算法[J].长安大学学报(自然科学版),2012,32(01):0.
[3]凌海兰,郗恩崇.基于随机波动条件的公交客运量预测模型[J].长安大学学报(自然科学版),2012,32(01):0.
[4]田娥,肖庆,陆小佳,等.安全驾驶的横向安全预警报警阈值的确定[J].长安大学学报(自然科学版),2012,32(01):0.
[5]侯贻栋,赵炜华,魏 朗,等.驾驶人空间距离判识规律心理学分析[J].长安大学学报(自然科学版),2012,32(03):86.
 HOU Yi-dong,ZHAO Wei-hua,WEI Lang,et al.Analysis on psychology in cognitive distance about drivers[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):86.
[6]赵跃峰,张生瑞,魏 华.隧道群路段运行速度特性分析[J].长安大学学报(自然科学版),2012,32(06):67.
 ZHAO Yue-feng,ZHANG Sheng-rui,WEI hua.Operating speed characteristics of tunnel group section[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):67.
[7]林 杉,许宏科,刘占文.一种高速公路隧道交通流元胞自动机模型[J].长安大学学报(自然科学版),2012,32(06):73.
 LIN Shan,XU Hong-ke,LIU Zhan-wen.One cellular automaton traffic flow model for expressway tunnel[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):73.
[8]刘俊德,徐 兵,梁永东,等.交通事故下高速公路行车安全评估[J].长安大学学报(自然科学版),2012,32(06):78.
 LIU Jun-de,XU bing,LIANG Yong-dong,et al.Traffic safety assessment of expressway in the accident[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):78.
[9]芮海田,吴群琪,赵跃峰,等.公路建设对区域经济发展的影响分析——以陕西省为例[J].长安大学学报(自然科学版),2012,32(06):83.
 RUI Hai-tian,WU Qun-qi,ZHAO Yue-feng,et al.Influence of highway construction on regional economy development——taking Shaanxi as an example[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):83.
[10]彭 辉,续宗芳,韩永启,等.城市群城际运输结构配置客流分担率模型[J].长安大学学报(自然科学版),2012,32(02):91.
 PENG Hui,XU Zong-fang,HAN Yong-qi,et al.Sharing ratios model of passenger flows in intercity transportation structure configuration among urban agglomeration[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):91.

备注/Memo

备注/Memo:
收稿日期:2025-02-23
基金项目:国家重点研发计划项目(2021YFB2601300); 中央高校基本科研业务费专项资金项目(300102383203)
作者简介:徐先峰(1982-),男,山东泰安人,教授,工学博士,E-mail:xxf_chd@163.com。
更新日期/Last Update: 2025-09-30