[1]刘建龙,滕继东,罗彦斌,等.非饱和粗粒土水气迁移冻胀模型及参数分析[J].长安大学学报(自然科学版),2025,45(5):129-139.[doi:10.19721/j.cnki.1671-8879.2025.05.011]
 LIU Jian-long,TENG Ji-dong,LUO Yan-bin,et al.Frost heave model and parameter analysis of unsaturated coarse-grained soils induced by vapor transfer[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):129-139.[doi:10.19721/j.cnki.1671-8879.2025.05.011]
点击复制

非饱和粗粒土水气迁移冻胀模型及参数分析()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年5期
页码:
129-139
栏目:
桥梁与隧道工程
出版日期:
2025-09-30

文章信息/Info

Title:
Frost heave model and parameter analysis of unsaturated coarse-grained soils induced by vapor transfer
文章编号:
1671-8879(2025)05-0129-11
作者:
刘建龙1滕继东2罗彦斌1张升2盛岱超23
(1. 长安大学 公路学院,陕西 西安 710064; 2. 中南大学 土木工程学院,湖南 长沙 410075; 3. 悉尼科技大学 土木与环境工程学院,新南威尔士 悉尼 2007)
Author(s):
LIU Jian-long1 TENG Ji-dong2 LUO Yan-bin1 ZHANG Sheng2 SHENG Dai-chao23
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. School of Civil Engineering,Central South University, Changsha 410075, Hunan, China; 3. School of Civil and Environmental Engineering, University of Technology Sydney, Sydney 2007, New South Wales, Australia)
关键词:
路基工程 非饱和土 粗粒土 水气迁移 冻胀模型 数值分析
Keywords:
Key words:subgrade engineering unsaturated soil coarse-grained soil vapor transfer frost heave model numerical analysis
分类号:
U416.1
DOI:
10.19721/j.cnki.1671-8879.2025.05.011
文献标志码:
A
摘要:
为预测非饱和粗粒土的水气迁移冻胀,并分析边界条件对非饱和粗粒土冻胀的影响规律,基于刚性冰冻胀模型框架,通过理论分析气态水迁移诱发冰透镜体的形成与生长机制,提出了冰透镜体的萌发判据,推导了考虑气态水作用的质量和能量平衡方程,建立了非饱和粗粒土水气迁移冻胀模型,并更新了自编的土体冻胀计算软件PCHeave,实现了模型的数值求解,并利用该软件分析了上覆压力、边界温度等因素对非饱和粗粒土冻胀的影响规律及冰透镜体的分布特征。研究结果表明:模型计算值与气态水补给的非饱和粗粒土一维冻胀试验值表现出较好的一致性,冻结7 d的最大冻胀量平均误差约为3.7%,提出的模型能够合理反映非饱和粗粒土的冻胀过程; 随着上覆压力的增大,冻胀量减小,分凝温度降低,冻结锋面处孔隙水压力增大,上覆压力达到300 kPa时,冻结细砾中的分凝温度约为-2 ℃,最大孔隙水压力约为0.3 kPa; 冻胀量随冻结指数和温度梯度的增大而增大,冻结锋面处的孔隙水压力随冻结温度的降低而增大; 冰透镜体主要集中在冻结锋面附近,冻结温度阶梯式下降条件下,冰透镜体近似呈均匀层状分布。研究结果可为寒区非饱和粗粒土路基的冻胀防治提供理论参考。
Abstract:
To predict the frost heave of unsaturated coarse-grained soils induced by vapor transfer and to analyze the influence of boundary condition on the frost heave, a rigid ice frost heave model framework was adopted. Through the theoretical analysis of formation and growth mechanisms of ice lenses induced by vapor transfer, a criterion for ice lens initiation was proposed, and the governing equations for mass and energy balance considering vapor transfer were derived. A frost heave model of unsaturated coarse-grained soils was established considering vapor transfer. The in-house computational software PCHeave was updated to implement the model numerically. Using this software, the effects of overburden pressure and boundary temperature on the frost heave and distribution characteristics of ice lens were investigated. The research results indicate that the values calculated by the model agree well with one-dimensional frost heave test results of unsaturated coarse-grained soils with vapor supply. The average error is about 3.7% in the maximum frost heave after 7 d of freezing. The proposed model can reasonably reflect the frost heave process of unsaturated coarse-grained soils. With the increase in the overburden pressure, the frost heave and the segregation temperature decrease, while the pore water pressure at the freezing front increases. When the overburden pressure is 300 kPa, the segregation temperature in the freezing gravel is about -2 ℃, and the maximum pore water pressure is about 0.3 kPa. With the increase in the freezing index and temperature gradient, the frost heave increases. The pore water pressure at the freezing front increases as the freezing temperature decreases. The ice lens mainly occurs near the freezing front and is approximately distributed in uniform layers when the freezing temperature stepwise decreases. These findings provide a theoretical reference for frost heave prevention and control of unsaturated coarse-grained soil subgrades in cold regions.2 tabs, 11 figs, 34 refs.

参考文献/References:

[1] 盛岱超,张 升,李 希.高速列车与路基冻胀相互作用机理[J].岩土工程学报,2013,35(12):2186-2191.
SHENG Dai-chao, ZHANG Sheng, LI Xi. Effects of train loads on frost heave of embankments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2186-2191.
[2]赵国堂,蒋金洋,崔颖辉,等.高速铁路路基填料中细颗粒分布特征及其对冻胀的影响[J].铁道学报,2017,39(10):1-9.
ZHAO Guo-tang, JIANG Jin-yang, CUI Ying-hui, et al. Distribution features of fine-grain in filling materials of high-speed railway subgrade and its impact on frost heaving[J]. Journal of the China Railway Society, 2017, 39(10): 1-9.
[3]牛富俊,林战举,吴旭阳,等.兰新客运专线浩门区间路基温度、水分及冻胀变形特征[J].冰川冻土,2016,38(4):1074-1082.
NIU Fu-jun, LIN Zhan-ju, WU Xu-yang, et al. Characteristics of subgrade's temperature, moisture and frost heave deformation in Haomen, passenger railway line from Lanzhou to Xinjiang[J]. Journal of Glaciology and Geocryology, 2016, 38(4): 1074-1082.
[4]SHENG D C, ZHANG S, NIU F J, et al. A potential new frost heave mechanism in high-speed railway embankments[J]. Géotechnique, 2014, 64(2): 144-154.
[5]ZHANG S, SHENG D C, ZHAO G T, et al. Analysis of frost heave mechanisms in a high-speed railway embankment[J]. Canadian Geotechnical Journal, 2015, 53(3): 520-529.
[6]姚仰平,王 琳.影响锅盖效应因素的研究[J].岩土工程学报,2018,40(8):1373-1382.
YAO Yang-ping, WANG Lin. Influence factors for “pot-cover effect”[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1373-1382.
[7]滕继东,贺佐跃,张 升,等.非饱和土水气迁移与相变:两类“锅盖效应”的发生机理及数值再现[J].岩土工程学报,2016,38(10):1813-1821.
TENG Ji-dong, HE Zuo-yue, ZHANG Sheng, et al. Moisture transfer and phase change in unsaturated soils: physical mechanism and numerical model for two types of “canopy effect”[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1813-1821.
[8]NIU F J, LI A Y, LUO J, et al. Soil moisture, ground temperatures, and deformation of a high-speed railway embankment in Northeast China[J]. Cold Regions Science and Technology, 2017, 133: 7-14.
[9]TENG J D, SHAN F, HE Z Y, et al. Experimental study of ice accumulation in unsaturated clean sand[J]. Géotechnique, 2019, 69(3): 251-259.
[10]雷华阳,张文振,冯双喜,等.水汽补给下砂土水分迁移规律及冻胀特性研究[J].岩土力学,2022,43(1):1-14.
LEI Hua-yang, ZHANG Wen-zhen, FENG Shuang-xi, et al. On water migration and frost heaving characteristics of sand under water vapor recharge[J]. Rock and Soil Mechanics, 2022, 43(1): 1-14.
[11]张玉芝,王天亮,张 飞,等.不同细粒含量下高铁路基粗颗粒填料水气迁移特征与冻胀特性[J].中国铁道科学,2021,42(4):1-8.
ZHANG Yu-zhi, WANG Tian-liang, ZHANG Fei, et al. Water-vapor migration and frost heave characteristics of coarse particle filler with different fine contents in high speed railway subgrade[J]. China Railway Science, 2021, 42(4): 1-8.
[12]刘建龙,滕继东,张 升,等.气态水迁移诱发非饱和粗粒土冻胀的试验研究[J].岩土工程学报,2021,43(7):1297-1305,1379-1380.
LIU Jian-long, TENG Ji-dong, ZHANG Sheng, et al. Experimental study on frost heave in unsaturated coarse-grained soil caused by vapour transfer[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1297-1305, 1379-1380.
[13]EVERETT D H. The thermodynamics of frost damage to porous solids[J]. Transactions of the Faraday Society, 1961, 57: 1541-1551.
[14]O'NEILL K, MILLER R D. Exploration of a rigid ice model of frost heave[J]. Water Resources Research, 1985, 21(3): 281-296.
[15]HARLAN R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research, 1973, 9(5): 1314-1323.
[16]KONRAD J M, MORGENSTERN N R. The segregation potential of a freezing soil[J]. Canadian Geotechnical Journal, 1981, 18(4): 482-491.
[17]REMPEL A W, WETTLAUFER J S, GRAE WORSTER M. Premelting dynamics in a continuum model of frost heave[J]. Journal of Fluid Mechanics, 2004, 498: 227-244.
[18]SHENG D C, AXELSSON K, KNUTSSON S. Frost heave due to ice lens formation in freezing soils: Ⅰ. Theory and verification[J]. Hydrology Research, 1995, 26(2): 125-146.
[19]REMPEL A W. Frost heave[J]. Journal of Glaciology, 2010, 56(200): 1122-1128.
[20]TENG J D, LIU J L, ZHANG S, et al. Modelling frost heave in unsaturated coarse-grained soils[J]. Acta Geotechnica, 2020, 15(11): 3307-3320.
[21]LI J F, DONG A T, TENG J D, et al. A new criterion for vapour induced ice lens initiation in coarse-grained soils[J]. Cold Regions Science and Technology, 2022, 199: 103575.
[22]TENG J D, LIU J L, ZHANG S, et al. Frost heave in coarse-grained soils: experimental evidence and numerical modelling[J]. Géotechnique, 2023, 73(12): 1100-1111.
[23]LI J F, PEREIRA J M, TENG J D, et al. Identifying ice lens initiation of frozen soils using particle image velocimetry method[J]. Canadian Geotechnical Journal, 2025, 62: 1-6.
[24]LI J F, TENG J D, HE H S, et al. Measuring ice lens initiation in soils by particle image velocimetry[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2025, DOI: https://doi.org/10.1016/j.jrmge.2025.03.049.
[25]LI J F, WANG Z L, TENG J D, et al. Numerical prediction of frost heave in soils: The role of the ice lens initiation criterion[J]. Computers and Geotechnics, 2025, 177, 106833.
[26]REMPEL A W. Formation of ice lenses and frost heave[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F2): F02S21.
[27]MA W, ZHANG L H, YANG C S. Discussion of the applicability of the generalized Clausius-Clapeyron equation and the frozen fringe process[J]. Earth—Science Reviews, 2015, 142: 47-59.
[28]ZHANG S, TENG J D, HE Z Y, et al. Canopy effect caused by vapour transfer in covered freezing soils[J]. Géotechnique, 2016, 66(11): 927-940.
[29]韩进宝,王利鑫,张莎莎,等.逐级降温工况下道基含盐砾质土盐-冻胀特性[J]. 长安大学学报(自然科学版), 2024, 44(1): 36-46.
HAN Jin-bao, WANG Li-xin, ZHANG Sha-sha, et al. Salt-frost expansion characteristics of salt gravel soil embankment under progressive cooling conditions[J]. Journal of Chang'an University(Natural Science Edition), 2024, 44(1): 36-46.
[30]刘红平,李 昊,魏 进,等.考虑细颗粒含量的季冻区公路路基水分迁移特性[J].长安大学学报(自然科学版),2024,44(4):27-37.
LIU Hong-ping, LI Hao, WEI Jin, et al. Water migration characteristics of highway subgrade in seasonal frozen areas considering fine particle content[J]. Journal of Chang'an University(Natural Science Edition), 2024, 44(4): 27-37.
[31]SAITO H, IMUNEK J, MOHANTY B P. Numerical analysis of coupled water, vapor, and heat transport in the vadose zone[J]. Vadose Zone Journal, 2006, 5(2): 784-800.
[32]TENG J D, KOU J Y, YAN X D, et al. Parameterization of soil freezing characteristic curve for unsaturated soils[J]. Cold Regions Science and Technology, 2020, 170: 102928.
[33]TENG J D, DONG A T, ZHANG S, et al. Freezing-thawing hysteretic behavior of soils[J]. Water Resources Research, 2024, 60(7): e2024WR037280.
[34]ZHANG L H, MA W, YANG C S, et al. An investigation of pore water pressure and consolidation phenomenon in the unfrozen zone during soil freezing[J]. Cold Regions Science and Technology, 2016, 130: 21-32.

相似文献/References:

[1]PETRIAEV A.列车对融土路基的振动影响(英文)[J].长安大学学报(自然科学版),2017,37(04):18.
 PETRIAEV A.Vibration impact of trains on thawed soil subgrade[J].Journal of Chang’an University (Natural Science Edition),2017,37(5):18.
[2]EVGENY S ASHPIZ,ANDREY A ZAYTSEV.白海附近解除火车限速的铁路路基振动诊断和物理建模(英文)[J].长安大学学报(自然科学版),2017,37(04):34.
 EVGENY S ASHPIZ,ANDREY A ZAYTSEV.Vibrational diagnostics and physical modeling of subgrade at the railway line nearby White Sea for deregulation of train speed limit[J].Journal of Chang’an University (Natural Science Edition),2017,37(5):34.
[3]张志春,李 旭,田亚护,等.神朔铁路路基填料在不同温度条件下的抗剪特性(英文)[J].长安大学学报(自然科学版),2017,37(04):60.
 ZHANG Zhi-chun,LI Xu,TIAN Ya-hu,et al.Shear strength characteristics at different temperatures of Shenshuo Railway subgrade filling[J].Journal of Chang’an University (Natural Science Edition),2017,37(5):60.
[4]麻佳,宋玲,刘杰,等.HDPE土工格室整体力学性能大型双轴拉伸试验[J].长安大学学报(自然科学版),2021,41(6):29.
 MA Jia,SONG Ling,LIU Jie,et al.Large scale biaxial tensile test on overall mechanicalproperties of HDPE geocell[J].Journal of Chang’an University (Natural Science Edition),2021,41(5):29.
[5]杨进博,李葱葱,文海家,等.软土路基透明相似材料最优配比联合设计方法[J].长安大学学报(自然科学版),2025,45(4):29.[doi:10.19721/j.cnki.1671-8879.2025.04.003]
 YANG Jin-bo,LI Cong-cong,WEN Hai-jia,et al.Integrated design method of optimal mix proportion of transparent similar materials for soft soil subgrade[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):29.[doi:10.19721/j.cnki.1671-8879.2025.04.003]
[6]杨涵晞,王梦洁,夏梦灿,等.交通荷载下漫灌区水泥土桩复合地基的动力特性[J].长安大学学报(自然科学版),2025,45(5):117.[doi:10.19721/j.cnki.1671-8879.2025.05.010]
 YANG Han-xi,WANG Meng-jie,XIA Meng-can,et al.Dynamic characteristics of cement soil pile composite foundation in flood irrigation area under traffic load[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):117.[doi:10.19721/j.cnki.1671-8879.2025.05.010]
[7]罗熹,王曌丞,唐小明,等.钢筋笼扩大头锚杆扩体段承载性能低周循环拉拔试验[J].长安大学学报(自然科学版),2025,45(5):105.[doi:10.19721/j.cnki.1671-8879.2025.05.009]
 LUO Xi,WANG Zhao-cheng,TANG Xiao-ming,et al.Low-cycle pullout test on bearing performance of expansion section for underreamed anchor with reinforcement cage[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):105.[doi:10.19721/j.cnki.1671-8879.2025.05.009]

备注/Memo

备注/Memo:
收稿日期:2025-03-22
基金项目:国家自然科学基金项目(52308338); 中国博士后科学基金项目(2023M740360); 国家资助博士后研究人员计划(GZB20230621); 中央高校基本科研业务费专项资金项目(300102214105)
作者简介:刘建龙(1989-),男,河南叶县人,讲师,工学博士,E-mail:jianlongliu@chd.edu.cn。
更新日期/Last Update: 2025-09-30