[1]罗熹,王曌丞,唐小明,等.钢筋笼扩大头锚杆扩体段承载性能低周循环拉拔试验[J].长安大学学报(自然科学版),2025,45(5):105-116.[doi:10.19721/j.cnki.1671-8879.2025.05.009]
 LUO Xi,WANG Zhao-cheng,TANG Xiao-ming,et al.Low-cycle pullout test on bearing performance of expansion section for underreamed anchor with reinforcement cage[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):105-116.[doi:10.19721/j.cnki.1671-8879.2025.05.009]
点击复制

钢筋笼扩大头锚杆扩体段承载性能低周循环拉拔试验()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年5期
页码:
105-116
栏目:
桥梁与隧道工程
出版日期:
2025-09-30

文章信息/Info

Title:
Low-cycle pullout test on bearing performance of expansion section for underreamed anchor with reinforcement cage
文章编号:
1671-8879(2025)05-0105-12
作者:
罗熹1王曌丞2唐小明3柳鸿博4许晨浒5缪国军6戴国亮5
(1. 长安大学 公路学院,陕西 西安 710064; 2. 中国一冶集团有限公司,湖北 武汉 430081; 3. 柳州市城市投资建设发展有限公司,广西 柳州 545000; 4. 兰州理工大学 土木与水利工程学院,甘肃 兰州 730050; 5. 东南大学 土木工程学院,江苏 南京 211189; 6. 南京东大自平衡桩基检测有限公司,江苏 南京 211164)
Author(s):
LUO Xi1 WANG Zhao-cheng2 TANG Xiao-ming3 LIU Hong-bo4 XU Chen-hu5MIAO Guo-jun6 DAI Guo-liang5
关键词:
路基工程 扩大头锚杆 钢筋笼 循环加载 承载力 拉拔试验
Keywords:
Key words:subgrade engineering underreamed anchor reinforcement cage cyclic loading bearing capacity pullout test
分类号:
U416.1
DOI:
10.19721/j.cnki.1671-8879.2025.05.009
文献标志码:
A
摘要:
针对扩大头锚杆在复杂地质条件下的承载性能提升需求,采用在扩体段嵌入变直径钢筋笼的技术方案,通过室内低周循环拉拔试验深入探究了钢筋笼对扩体段承载性能、破坏模式及荷载传递机制的影响; 选取2根变直径钢筋笼扩大头锚杆和2根普通无钢筋笼扩大头锚杆,在统一参数标准下进行了分级循环加载,利用应变片监测了注浆体表面及主筋的应力分布,并对比分析了其荷载-位移曲线及破坏形态。研究结果表明:嵌入钢筋笼可显著提升扩大头锚杆的综合性能,钢筋笼扩大头锚杆极限承载力较普通扩大头锚杆提高约62.5%,极限位移增加约1.68倍,且普通扩大头锚杆表现为脆性劈裂破坏,而钢筋笼扩大头锚杆则表现为塑性破坏; 钢筋笼通过优化荷载传递显著增强了扩体段整体性,在扩体段后半段,钢筋笼扩大头锚杆注浆体表面应力为普通扩大头锚杆的3.2~4.9倍,扩体段嵌入钢筋笼后,主筋应力衰减速率降低,荷载传递效率提高,主筋在扩体段大部分深度内应力更稳定,且在承压板附近形成了有效应力传递,显著提高了扩体段后半段可承受的最大应力; 钢筋笼增加了主筋杆体与注浆体的接触面积,提升了侧摩阻力,有效分散了应力,延缓了应力集中引发的破坏,使扩大头锚杆在循环荷载下的累积塑性变形可控。综上所述,研究结果从承载性能、破坏机理和内力分布的角度,为理解并应用钢筋笼扩大头锚杆提供了依据。
Abstract:
To address the need for improving the bearing performance of underreamedanchor in complex geological conditions, the technical solution of embedding anexpandable reinforcement cage within the expansion section was adopted. Through theindoor low-cycle pullout tests, the influence of reinforcement cage on the bearingperformance, failure mode, and load transfer mechanism of the expansion section wasthoroughly investigated. Two underreamed anchors with expandable reinforcementcages and two conventional underreamed anchors without reinforcement cages wereselected and subjected to graded cyclic loading under uniform parameter standards.Strain gauges were used to monitor the stress distributions on grout body surface andmain bars, and their load-displacement curves and failure modes were comparativelyanalyzed. The research results indicate that embedding the reinforcement cage cansignificantly enhance the overall performance of underreamed anchors. Compared to conventional underreamed anchors, theultimate bearing capacity of underreamed anchors with reinforcement cages increasesby approximately 62.5%, and the ultimate displacement increases by about1.68times. The conventional underreamedanchors exhibit brittle splitting failure, whereas the underreamed anchors withreinforcement cages display ductile failure. The reinforcement cage significantlyenhances the integrity of the expansion section by optimizing load transfer. Within therear half of the expansion section, the stresses on the grout body surfaces of underreamedanchors with reinforcement cages are 3.2-4.9 times of those of conventionalunderreamed anchors. After embedding the reinforcement cage within the expansionsection, the stress attenuation rate in the main bar decreases and the load transferefficiency improve. The stress in the main bar remains more stable throughout most ofthe expansion section depth. Effective stress transfer is established near the bearingplate, significantly increasing the maximum stress withstand by the rear half of theexpansion section. The reinforcement cage increases the contact area between the mainbar and the grout body, improves the side friction resistance, effectively dispersesstress, delays the failure caused by the stress concentration, and enables the cumulativeplastic deformation of the underreamed anchors to be controllable under cyclicloading. In summary, the research results provide a basis for understanding andapplying underreamed anchor with reinforcement cage from perspectives of bearingperformance, failure mechanism, and internal force distribution.3 tabs, 9 figs, 34 refs.

参考文献/References:

[1] 蔡 强,李宝幸,宋 军.扩大头锚杆研究进展综述[J].科学技术与工程,2022,22(25):10819-10828.
CAI Qiang, LI Bao-xing, SONG Jun.Advance on the bit expanded anchor[J].Science Technology and Engineering,2022, 22(25): 10819-10828.
[2]MICKOVSKI S B, ENNOS A R. Model andwhole-plant studies on the anchoragecapabilities of bulbs[J]. Plant and Soil, 2003,255(2): 641-652.
[3]曾庆义,杨晓阳,杨昌亚.扩大头锚杆的力学机制和计算方法[J].岩土力学,2010,31(5):1359-1367.
ZENG Qing-yi, YANG Xiao-yang, YANGChang-ya. Mechanical mechanism andcalculation method of bit expanded anchorrods[J]. Rock and Soil Mechanics, 2010,31(5): 1359-1367.
[4]文鹏宇.扩大头抗拔锚杆承载特性试验研究[D].郑州:郑州大学,2016.
WEN Peng-yu. Experimental research onbearing behavior of underreamed upliftanchor[D]. Zhengzhou: ZhengzhouUniversity, 2016.
[5]GUO G, LIU Z, TANG A P, et al. Model testresearch on bearing mechanism ofunderreamed ground anchor in sand[J].Mathematical Problems in Engineering, 2018,2018(1): 9746438.
[6]郭 钢.扩体锚杆承载特性与破坏模式模型试验与数值模拟研究[D].北京:中冶集团建筑研究总院,2012.
GUO Gang. Model test and numericalsimulation research on bearing capacitycharacteristics and failure modes ofunderreamed ground anchor[D]. Beijing:Central Research Institute of Building andConstruction Co., Ltd., MMC Group, 2012.
[7]郭 钢,刘 钟,邓益兵,等.砂土中扩体锚杆承载特性模型试验研究[J].岩土力学,2012,33(12):3645-3652.
GUO Gang, LIU Zhong, DENG Yi-bing, et al.Model test research on bearing capacitycharacteristics of underreamed ground anchorin sand[J]. Rock and Soil Mechanics, 2012,33(12): 3645-3652.
[8]杨 卓.囊压式扩体锚杆锚固机理与承载特性试验研究[D].北京:中国矿业大学(北京),2016.
YANG Zhuo. Experiment study on theanchoring mechanism and bearingcharacteristics of the capsule-type expansionbolt[D]. Beijing: China University of Miningand Technology, Beijing, 2016.
[9]JGJ/T 282—2012,高压喷射扩大头锚杆技术规程[S].
JGJ/T 282—2012, technical specificationfor underreamed anchor by jet grouting[S].
[10]周同和,郜新军,郭院成,等.下部扩大段复合桩抗拔承载力设计方法与试验研究[J].岩土力学,2019,40(10):3778-3782,3788.
ZHOU Tong-he, GAO Xin-jun, GUOYuan-cheng, et al. Design method andexperimental study of uplift bearing capacityof the lower enlarged composite pile[J]. Rockand Soil Mechanics, 2019, 40(10): 3778-3782,3788.
[11]李永辉,陈陆杰,赵鹤飞,等.扩大头构件受力机理的大比例尺模型试验研究[J].地下空间与工程学报,2020,16(1):149-159.
LI Yong-hui, CHEN Lu-jie, ZHAO He-fei, etal. Large scale model test research onmechanical characteristics of expanded headcomponent[J]. Chinese Journal ofUnderground Space and Engineering, 2020,16(1): 149-159.
[12]赵鹤飞.扩大头锚杆抗拔试验研究[D].郑州:郑州大学,2016.
ZHAO He-fei. Experimental tests of drawingon expanded head bolt[D]. Zhengzhou:Zhengzhou University, 2016.
[13]李粮纲,易 威,潘 攀,等.扩大头锚杆最大抗拔力计算公式探讨与分析[J].煤炭工程,2014,46(1):102-104.
LI Liang-gang, YI Wei, PAN Pan, et al.Discussion and analysis on max pullout forcecalculation formula of expanded head bolt[J].Coal Engineering, 2014, 46(1): 102-104.
[14]郭全威.扩大头压力分散型可回收锚杆的受力机理及数值模拟[D].秦皇岛:燕山大学,2021.
GUO Quan-wei. Force mechanism andnumerical simulation of expanded headpressure dispersion recoverable bolt[D].Qinhuangdao: Yanshan University, 2021.
[15]郭 钢.扩体锚杆承载机理与极限承载力研究[D].哈尔滨:哈尔滨工业大学,2019.
GUO Gang. Study on bearing mechanism andultimate bearing capacity of underreamedanchor[D]. Harbin: Harbin Institute ofTechnology, 2019.
[16]ZHENG B, BAYAT M, SHI Y H, et al.Forecasting approach of ultimate bearingcapacity of underreamed anchor under localshear failure[J]. Journal of EngineeringResearch, 2025, 13(2): 1379-1386.
[17]马天忠,安子申,周 勇,等.拉力型锚杆合理锚固长度分析[J].长安大学学报(自然科学版),2022,42(5):43-51.
MA Tian-zhong, AN Zi-shen, ZHOU Yong, etal. Analysis on reasonable anchor length oftensile anchor[J]. Journal of Chang'anUniversity(Natural Science Edition), 2022,42(5): 43-51.
[18]潘政宇.基于广西三类主要地层扩大头钢筋笼抗浮锚杆承载特性研究[D].南宁:广西大学,2020.
PAN Zheng-yu. Study on bearingcharacteristics of enlarged head reinforcementcage anti-floating anchors rod on three maintypes of stratum in Guangxi[D]. Nanning:Guangxi University, 2020.
[19]王维涛,鲁武民,王纬康,等.涨壳式预应力中空锚杆锚固效果及其支护参数优化[J].长安大学学报(自然科学版),2023,43(1):123-132.
WANG Wei-tao, LU Wu-min, WANGWei-kang, et al. Anchorage effect and supportparameters optimization of prestressed hollowbolts with expanded shell in rockburst sectionof tunnel[J]. Journal of Chang'an University(Natural Science Edition), 2023, 43(1):123-132.
[20]王大伟,沈 鹏.高速公路改扩建工程路堑高边坡支护机理与效果[J].长安大学学报(自然科学版),2017,37(3):39-46.
WANG Da-wei, SHEN Peng. Supportmechanism and effect of cutting high slope inexpressway reconstruction and expansionprojects[J]. Journal of Chang'an University(Natural Science Edition), 2017, 37(3): 39-46.
[21]BAI X Y, ZHAO X M, YAN N, et al. Fieldtest of GFRP bar anti-floating anchorslurry-rock interface bonding performance[J].Composite Structures, 2024, 331: 117893.
[22]白晓宇,井德胜,王海刚,等.GFRP抗浮锚杆界面黏结性能现场试验[J].岩石力学与工程学报,2022,41(4):748-763.
BAI Xiao-yu, JING De-sheng, WANGHai-gang, et al. Field test of interface bondingperformance of GFRP anti-floatinganchors[J]. Chinese Journal of RockMechanics and Engineering, 2022, 41(4):748-763.
[23]BAI X Y, ZHENG C, ZHANG M Y, et al.Bond mechanical properties of glass fiberreinforced polymer anti-floating anchor inconcrete baseplate[J]. Journal of ShanghaiJiao Tong University(Science), 2021, 26(6):804-812.
[24]白晓宇,匡 政,张明义,等.全螺纹GFRP抗浮锚杆与混凝土底板黏结锚固性能的试验研究[J].材料导报,2019,33(18):3035-3042.
BAI Xiao-yu, KUANG Zheng, ZHANGMing-yi, et al. Experimental investigation forthe bonding and anchoring property of thefull-thread GFRP anti-floating anchor inconcrete floor[J]. Materials Reports, 2019,33(18): 3035-3042.
[25]白晓宇.GFRP抗浮锚杆锚固机理试验研究与理论分析[D].青岛:青岛理工大学,2015.
BAI Xiao-yu. Experimental study andtheoretical analysis on the anchoringmechanism for GFRP anti-floating anchor[D].Qingdao: Qingdao University of Technology,2015.
[26]张明义,寇海磊,白晓宇,等.玻璃纤维增强聚合物抗浮锚杆抗拔性能试验研究与机制分析[J].岩土力学,2014,35(4):1069-1076,1083.
ZHANG Ming-yi, KOU Hai-lei, BAIXiao-yu, et al. Experimental study andmechanism analysis of the anti-pullingbehavior of glass fiber reinforced polymeranti-float anchor[J]. Rock and SoilMechanics, 2014, 35(4): 1069-1076, 1083.
[27]KALTHOFF M, RAUPACH M. Pull-outbehaviour of threaded anchors in fibrereinforced ordinary concrete and UHPC formachine tool constructions[J]. Journal ofBuilding Engineering, 2021, 33: 101842.
[28]CIHAN M T, AYDIN Z, CINAR K. Effect ofinclination angle on the pull-out strength ofbonded anchors installed in low-strengthconcrete[J]. Journal of Building Engineering,2023, 75: 107046.
[29]崔希鹏,苏 锋,孙 魏.基于孔壁形态的锚杆锚固体荷载传递机理及特性分析[J].煤炭科学技术,2021,49(8):96-102.
CUI Xi-peng, SU Feng, SUN Wei. Analysis ofsolid load transfer mechanism andcharacteristics of anchor based on hole wallshape[J]. Coal Science and Technology, 2021, 49(8): 96-102.
[30]王正振,张振涛,戴国亮,等.基于拟动力法的框架预应力锚杆支护边坡的稳定性计算[J].中国公路学报, 2025,38(1):119-128.
WANG Zheng-zhen, ZHANG Zhen-tao, DAI Guo-liang, et al. Stability analysis of slope reinforced with a frame-prestressed anchor rod structure using pseudodynamic method[J]. China Journal of Highway and Transport, 2025, 38(1): 119-128.
[31]江苏景源万河环境科技有限公司.一种锚杆或桩基用变直径钢筋笼及应用:中国,CN201710316124.4[P].2019-11-22.
Jiangsu Green River Environment TechnologyCo., Ltd. Variable-diameter reinforcementcage for anchors or pile foundations andapplication thereof: China,CN201710316124.4[P]. 2019-11-22.
[32]江苏景源万河环境科技有限公司.一种克服抗浮固定直径锚头或扩大头锚杆体系变形的工法:中国,CN201710363883.6[P].2019-08-13.
Jiangsu Green River Environment TechnologyCo., Ltd. Construction method for overcomingdeformation of anti-floating fixed-diameteranchor heads or underreamed anchorssystems: China, CN201710363883.6[P].2019-08-13.
[33]T/CECS 1724—2024,变直径钢筋笼扩大头锚杆技术规程[S].
T/CECS 1724—2024, technical specificationfor underreamed anchor equipped withexpandable reinforced cage[S].
[34]GB 50086—2015,岩土锚杆与喷射混凝土支护工程技术规范[S].
GB 50086—2015, technicalcode for engineering of ground anchoragesand shotcrete support[S].

相似文献/References:

[1]PETRIAEV A.列车对融土路基的振动影响(英文)[J].长安大学学报(自然科学版),2017,37(04):18.
 PETRIAEV A.Vibration impact of trains on thawed soil subgrade[J].Journal of Chang’an University (Natural Science Edition),2017,37(5):18.
[2]EVGENY S ASHPIZ,ANDREY A ZAYTSEV.白海附近解除火车限速的铁路路基振动诊断和物理建模(英文)[J].长安大学学报(自然科学版),2017,37(04):34.
 EVGENY S ASHPIZ,ANDREY A ZAYTSEV.Vibrational diagnostics and physical modeling of subgrade at the railway line nearby White Sea for deregulation of train speed limit[J].Journal of Chang’an University (Natural Science Edition),2017,37(5):34.
[3]张志春,李 旭,田亚护,等.神朔铁路路基填料在不同温度条件下的抗剪特性(英文)[J].长安大学学报(自然科学版),2017,37(04):60.
 ZHANG Zhi-chun,LI Xu,TIAN Ya-hu,et al.Shear strength characteristics at different temperatures of Shenshuo Railway subgrade filling[J].Journal of Chang’an University (Natural Science Edition),2017,37(5):60.
[4]麻佳,宋玲,刘杰,等.HDPE土工格室整体力学性能大型双轴拉伸试验[J].长安大学学报(自然科学版),2021,41(6):29.
 MA Jia,SONG Ling,LIU Jie,et al.Large scale biaxial tensile test on overall mechanicalproperties of HDPE geocell[J].Journal of Chang’an University (Natural Science Edition),2021,41(5):29.
[5]杨进博,李葱葱,文海家,等.软土路基透明相似材料最优配比联合设计方法[J].长安大学学报(自然科学版),2025,45(4):29.[doi:10.19721/j.cnki.1671-8879.2025.04.003]
 YANG Jin-bo,LI Cong-cong,WEN Hai-jia,et al.Integrated design method of optimal mix proportion of transparent similar materials for soft soil subgrade[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):29.[doi:10.19721/j.cnki.1671-8879.2025.04.003]
[6]杨涵晞,王梦洁,夏梦灿,等.交通荷载下漫灌区水泥土桩复合地基的动力特性[J].长安大学学报(自然科学版),2025,45(5):117.[doi:10.19721/j.cnki.1671-8879.2025.05.010]
 YANG Han-xi,WANG Meng-jie,XIA Meng-can,et al.Dynamic characteristics of cement soil pile composite foundation in flood irrigation area under traffic load[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):117.[doi:10.19721/j.cnki.1671-8879.2025.05.010]
[7]刘建龙,滕继东,罗彦斌,等.非饱和粗粒土水气迁移冻胀模型及参数分析[J].长安大学学报(自然科学版),2025,45(5):129.[doi:10.19721/j.cnki.1671-8879.2025.05.011]
 LIU Jian-long,TENG Ji-dong,LUO Yan-bin,et al.Frost heave model and parameter analysis of unsaturated coarse-grained soils induced by vapor transfer[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):129.[doi:10.19721/j.cnki.1671-8879.2025.05.011]

备注/Memo

备注/Memo:
收稿日期:2025-03-04
基金项目:国家自然科学基金项目(52378328)
作者简介:罗 熹(1982-),男,广西柳州人,高级工程师,工学博士,E-mail:21027445@qq.com。
更新日期/Last Update: 2025-09-30