[1]钱超,赵一辰,孙茂贵,等.单洞四车道公路隧道人行横通道安全间距研究[J].长安大学学报(自然科学版),2025,45(5):81-91.[doi:10.19721/j.cnki.1671-8879.2025.05.007]
 QIAN Chao,ZHAO Yi-chen,SUN Mao-gui,et al.Study on safety distance of pedestrian cross passages in single-tube four-lane highway tunnels[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):81-91.[doi:10.19721/j.cnki.1671-8879.2025.05.007]
点击复制

单洞四车道公路隧道人行横通道安全间距研究()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年5期
页码:
81-91
栏目:
桥梁与隧道工程
出版日期:
2025-09-30

文章信息/Info

Title:
Study on safety distance of pedestrian cross passages in single-tube four-lane highway tunnels
文章编号:
1671-8879(2025)05-0081-11
作者:
钱超1赵一辰1孙茂贵1陈建勋2罗彦斌2李卓3
(1. 长安大学 电子与控制工程学院,陕西 西安 710064; 2. 长安大学 公路学院,陕西 西安 710064; 3. 中交第一公路勘察设计研究院有限公司,陕西 西安 710075)
Author(s):
QIAN Chao1 ZHAO Yi-chen1 SUN Mao-gui1 CHEN Jian-xun2 LUO Yan-bin2 LI Zhuo3
(1. School of Electronic and Control Engineering, Chang'an University, Xi'an 710064, Shaanxi, China; 2. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 3. CCCC First Highway Consultants Co., Ltd., Xi'an 710075, Shaanxi, China)
关键词:
隧道工程 人行横通道 间距设计 隧道断面形状 单洞四车道隧道
Keywords:
tunnel engineering pedestrian cross passage distance setting cross-sectional shape single-tube four-lane tunnel
分类号:
U45
DOI:
10.19721/j.cnki.1671-8879.2025.05.007
文献标志码:
A
摘要:
针对单洞四车道矩形断面和拱形断面公路隧道开展人行横通道安全间距研究,分析2类隧道发生50 MW规模火灾时烟尘浓度、温度、CO浓度和能见度分布差异,量化隧道断面形状对可用疏散时间的影响,并提出合理的人行横通道安全间距设置方案。研究结果表明:矩形断面隧道在火灾发生后,烟尘浓度上升较快,温度和CO浓度增加较为显著,能见度衰减也较快; 拱形断面隧道由于其结构特性,建筑限界外的隧道拱顶部分有更大的蓄烟空间,使得在相同水平高度下,烟尘浓度、温度和CO浓度的增长速度较为缓慢,尤其能见度衰减至安全疏散临界值相对较慢,有效延长了可用疏散时间,因而人员疏散环境整体占优; 为保证隧道内人员在火灾工况下的安全疏散,应结合不同隧道断面形状设置人行横通道安全间距,建议单洞四车道矩形断面隧道人行横通道安全间距不应大于240 m,拱形断面隧道不应大于300 m; 单洞四车道公路隧道设计目前是相关规范的空白,应结合隧道断面形状、火灾规模及车道数等参数开展人行横通道安全间距设置研究,可为相关工程设计及防灾救援提供技术支撑。
Abstract:
The safety distance of pedestrian cross passages in single-tube four-lane rectangular and arch-shaped highway tunnels was investigated. The differences in smoke concentration, temperature, carbon monoxide(CO)concentration, and visibility distribution were analyzed for a 50 MW fire in these two tunnel types. The impact of tunnel cross-section shape on the available safe escape time(ASET)was quantified, and a reasonable safety distance setting scheme for pedestrian cross passages was proposed. The results show that in rectangular cross-section tunnels, smoke concentration rises rapidly in a fire temperature and CO concentration significantly increase, while visibility declines quickly. In contrast, due to their structural characteristics, arch-shaped tunnels have a larger smoke storage space beyond the structural boundary, resulting in slower growth rates of smoke concentration, temperature, and CO concentration at the same horizontal height. Notably, visibility declines to the threshold for safe evacuation relatively slow, effectively extending the ASET and resulting in an overall superior evacuation environment. To ensure safe evacuation of personnel in the tunnel under fire conditions, the safety distance for pedestrian cross passages should be set in conjunction with tunnel cross-section shape. It is recommended that the safety distance in single-tube four-lane rectangular tunnels should not exceed 240 m, while in arch-shaped tunnels, it should not exceed 300 m. Currently, there are no provisions in relevant specifications for single-tube four-lane highway tunnel design. Research on pedestrian cross passages safety distances should consider tunnel cross-section shape, fire scale, and lane count, providing technical support for engineering design, disaster prevention, and rescue operation.6 tabs, 13 figs, 28 refs.

参考文献/References:

[1] 中华人民共和国交通运输部.2023年交通运输行业发展统计公报-政府信息公开-交通运输部[EB/OL].(2024-06-18)[2024-08-01].https://www.gov.cn/lianbo/bumen/202406/content_6957901.htm.
Ministry of Transport of the People's Republic of China. 2023 Statistical bulletin on the development of the transportation industry-government information disclosure-ministry of transport[EB/OL].(2024-06-18)[2024-08-01].https://www.gov.cn/lianbo/bumen/
202406/content_6957901.htm.
[2]赖金星,周 慧,程 飞,等.公路隧道火灾事故统计分析及防灾减灾对策[J].隧道建设,2017,37(4):409-415.
LAI Jin-xing, ZHOU Hui, CHENG Fei, et al. Statistical analysis of fire accidents in highway tunnels and countermeasures for disaster prevention and reduction[J]. Tunnel Construction, 2017, 37(4): 409-415.
[3]刘 科.山岭隧道机械化大断面法设计关键技术[J].隧道建设,2022,42(4):703-713.
LIU Ke. Key design technology for large cross-section mechanized construction of mountainous tunnels[J]. Tunnel Construction, 2022, 42(4): 703-713.
[4]王少飞,涂 耘,王小军.水下公路(道路)隧道交通工程设施设计研究[J].隧道建设,2015,35(11):1209-1213.
WANG Shao-fei, TU Yun, WANG Xiao-jun. Research on design of traffic facilities of underwater road tunnels[J]. Tunnel Construction, 2015, 35(11): 1209-1213.
[5]周孝清,赵相相,丁云飞,等.火灾时隧道截面形状对临界风速和烟气分布影响的数值研究[J].广州大学学报(自然科学版),2006,5(2):54-58.
ZHOU Xiao-qing, ZHAO Xiang-xiang, DING Yun-fei, et al. Numerical studies on the critical velocity and smoke distribution affected by tunnel cross-section geometry in tunnel fire[J]. Journal of Guangzhou University(Natural Science Edition), 2006, 5(2): 54-58.
[6]赵小龙,陈长坤,陈 杰,等.阻塞比对地铁隧道烟气流速及温度分布的影响分析[J].消防科学与技术,2019,38(2):177-180.
ZHAO Xiao-long, CHEN Chang-kun, CHEN Jie, et al. Analysis on the influence of blocking ratio on smoke flow speed and temperature distribution of subway tunnel[J]. Fire Science and Technology, 2019, 38(2): 177-180.
[7]JTG 3370.1—2018,公路隧道设计规范第一册:土建工程[S].
JTG 3370.1—2018, specifications for design of highway tunnels-section 1: Civil engineering[S].
[8]JTG D70/2—2014,公路隧道设计规范第二册:交通工程与附属设施[S].
JTG D70/2—2014, specifications for design of highway tunnels-section 2: Traffic engineering and ancillary facilities[S].
[9]张俊儒,吴 洁,严丛文,等.中国四车道及以上超大断面公路隧道修建技术的发展[J].中国公路学报,2020,33(1):14-31.
ZHANG Jun-ru, WU Jie, YAN Cong-wen, et al. Construction technology of super-large section of highway tunnels with four or more lanes in China[J]. China Journal of Highway and Transport, 2020, 33(1): 14-31.
[10]张玉春,向 月,何 川,等.公路隧道横通道人员疏散行为及通行能力实验研究[J].西南交通大学学报,2016,51(4):615-620.
ZHANG Yu-chun, XIANG Yue, HE Chuan, et al. Experimental study on pedestrian behavior and traffic capacity of cross passage in highway tunnel[J]. Journal of Southwest Jiaotong University, 2016, 51(4): 615-620.
[11]PAL R, BOSE I. An optimization based approach for deployment of roadway incident response vehicles with reliability constraints[J]. European Journal of Operational Research, 2009, 198(2): 452-463.
[12]CALIENDO C, CIAMBELLI P, DE GUGLIELMO M L, et al. Simulation of fire scenarios due to different vehicle types with and without traffic in a bi-directional road tunnel[J]. Tunneling and Underground Space Technology, 2013, 37: 22-36.
[13]范 磊.公路隧道火灾对人行横通道间距设置的影响研究[D].成都:西南交通大学,2007.
FAN Lei. Study on highway tunnel fire impacts on the cross passage interval[D]. Chengdu: Southwest Jiaotong University, 2007.
[14]张 品,郑佳艳,邹宗良,等.高海拔公路隧道人行横通道纵向间距参数设置研究[J].公路交通技术,2019,35(1):117-122.
ZHANG Pin, ZHENG Jia-yan, ZOU Zong-liang, et al. Research on the crosswalk interval of road tunnel at high altitude[J]. Journal of Highway and Transportation Research and Development, 2019, 35(1): 117-122.
[15]GB/T 31593.9—2015,消防安全工程第9部分:人员疏散评估指南[S].
GB/T 31593.9—2015, fire safety engineering—Part 9: Guidance on evaluation of behaviour and movement of people[S].
[16]BENDELIUS A G. Tunnel fire and life safety within the world road association(PIARC)[J]. Tunnelling and Underground Space Technology, 2002, 17(2): 159-161.
[17]JTG/T 3660—2020,公路隧道施工技术规范[S].
JTG/T 3660—2020, technical specifications for construction of highway tunnel[S].
[18]Technical Committee 3.3 Road Tunnels Operations. Design fire characteristics for road tunnels[R]. Paris: PIARC, 2016.
[19]GB1589—2016,汽车、挂车及汽车列车外廓尺寸、轴荷及质量限值[S].
GB1589—2016, limits of dimensions, axle loads and masses for motor vehicles, trailers and combination vehicles[S].
[20]NFPA 502—2020, standard for road tunnels, bridges, and other limited access highways(Effective date: August 25, 2019)[S].
[21]MCGRATTAN K, MCDERMOTT R, WEINSCHENK C, et al. Fire dynamics simulator technical reference guide(volume 1): Mathematical model(FDSVersion6.3.2)[M]. Washington DC: Nation Institute of Standards and Technology, 2015.
[22]中华人民共和国中央人民政府.第七次全国人口普查公报:中国政府网[EB/OL].(2021-5-13)[2024-01-24].https://www.gov.cn/guoqing/2021-05/13/con
tent_5606149.htm.
Central Government of the People's Republic of China. Bulletin of the 7th national census: Chinese government website[EB/OL].(2021-5-13)[2024-01-24]. https://www.gov.cn/guoqing/2021-05/13/content_5606149.htm.
[23]JTG/T D70—2010,公路隧道设计细则[S].
JTG/T D70—2010, guidelines for design of highway tunnel[S].
[24]JTG/T 3371—2022,公路水下隧道设计规范[S].
JTG/T 3371—2022, specifications for design of highway underwater tunnel[S].
[25]Technical Committee 5 Road Tunnels. Fire and smoke control in road tunnels[R]. Paris: PIARC, 1999.
[26]JTG/T D70/2-02—2014,公路隧道通风设计细则[S].
JTG/T D70/2-02—2014, guidelines for design of ventilation of highway tunnels[S].
[27]DB43/ 729—2012,公路隧道消防技术规范[S].
DB43/ 729—2012, technical specification for fire protection in highway tunnels[S].
[28]PIARC Technical Committee C.4 Road Tunnel Operation. Best practice for road tunnel emergency exercises[R]. Paris: PIARC, 2012.

相似文献/References:

[1]罗 刚,石研玉,申 奇,等.水中悬浮隧道锚索横向动力特性分析[J].长安大学学报(自然科学版),2012,32(03):73.
 LUO Gang,SHI Yan-yu,SHENG Qi,et al.Lateral dynamic characteristics analysis for cable of submerged floating tunnel in water[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):73.
[2]易富君,韩 直,邓 卫.公路隧道群运营安全性综合评价方法[J].长安大学学报(自然科学版),2012,32(03):79.
 YI Fu-jun,HAN Zhi,DENG Wei.Comprehensive safety evaluation method of expressway tunnel group[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):79.
[3]王 磊,郭洋洋.特长公路隧道运营网络通风技术[J].长安大学学报(自然科学版),2012,32(04):51.
 WANG Lei,GUO Yang-yang.Network ventilation technology of operation period in super long highway tunnel[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):51.
[4]韩日美,宋战平,谢永利,等.土压平衡盾构土仓压力对地表沉降的影响[J].长安大学学报(自然科学版),2010,30(01):59.
 HAN Ri-mei,SONG Zhan-ping,XIE Yong-li,et al.Affection of soil warehouses pressure of EPB shield on ground settlement[J].Journal of Chang’an University (Natural Science Edition),2010,30(5):59.
[5]朱正国,陈明长,孙明磊.双连拱公路隧道围岩压力计算方法[J].长安大学学报(自然科学版),2010,30(02):75.
 ZHU Zheng-guo,CHEN Ming-zhang,SUN Ming-lei.Calculation method of pressure of surrounding rock on double-arch road tunnel[J].Journal of Chang’an University (Natural Science Edition),2010,30(5):75.
[6]刘 辉,李 波,吴从师,等.岩溶隧道掘进爆破震动效应分析[J].长安大学学报(自然科学版),2010,30(04):56.
 LIU Hui,LI Bo,WU Cong-shi,et al.Analysis on effects of vibration resulted from driving blasting in Karst tunnel[J].Journal of Chang’an University (Natural Science Edition),2010,30(5):56.
[7]朱春生,杨晓华,来弘鹏,等.公路隧道衬砌后空洞对结构安全的影响[J].长安大学学报(自然科学版),2010,30(05):63.
 ZHU Chun-sheng,YANG Xiao-hua,LAI Hong-peng,et al.Impact of empty hole behind expressway tunnel lining on structure safety[J].Journal of Chang’an University (Natural Science Edition),2010,30(5):63.
[8]来弘鹏,谢永利,杨晓华.不同应力场软弱围岩公路连拱隧道中墙受力特征[J].长安大学学报(自然科学版),2010,30(06):50.
 LAI Hong-peng,XIE Yong-li,YANG Xiao-hua.Stress characteristics of middle wall in soft-wreak surrounding rocks highway multiple-arch tunnel under different stress field[J].Journal of Chang’an University (Natural Science Edition),2010,30(5):50.
[9]来弘鹏,谢永利,杨晓华,等.不同应力场软弱围岩公路连拱隧道力学特征试验[J].长安大学学报(自然科学版),2008,28(06):60.
 LAI Hong-peng,XIE Yong-li,YANG Xiao-hua.Model tests for soft-weak surrounding rocks highway multiple-arch tunnel stress characteristics in different stress fields[J].Journal of Chang’an University (Natural Science Edition),2008,28(5):60.
[10]郭建新,高永涛.基于围岩破坏区和承载力的锚杆支护设计[J].长安大学学报(自然科学版),2008,28(06):65.
 GUO Jian-xin,GAO Yong-tao.Design of anchor bolt support based on analysis of surround rock damage area and bear force[J].Journal of Chang’an University (Natural Science Edition),2008,28(5):65.

备注/Memo

备注/Memo:
收稿日期:2025-02-26
基金项目:国家重点研发计划项目(2018YFB1600100); 甘肃省科技重点研发计划项目(22YF11GA299)
作者简介:钱 超(1984-),男,江苏新沂人,副教授,工学博士,E-mail:qianchao@chd.edu.cn。
通信作者:陈建勋(1969-),男,陕西韩城人,教授,博士研究生导师,工学博士,E-mail:chenjx1969@chd.edu.cn。
更新日期/Last Update: 2025-09-30