[1]杨程程,柳力,刘朝晖,等.纳米ATP接枝玄武岩纤维及其与沥青黏结性能研究[J].长安大学学报(自然科学版),2025,45(5):68-80.[doi:10.19721/j.cnki.1671-8879.2025.05.006]
 YANG Cheng-cheng,LIU Li,LIU Zhao-hui,et al.Study on nano-ATP grafted basalt fiber and its bonding characteristics with asphalt[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):68-80.[doi:10.19721/j.cnki.1671-8879.2025.05.006]
点击复制

纳米ATP接枝玄武岩纤维及其与沥青黏结性能研究()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年5期
页码:
68-80
栏目:
道路工程
出版日期:
2025-09-30

文章信息/Info

Title:
Study on nano-ATP grafted basalt fiber and its bonding characteristics with asphalt
文章编号:
1671-8879(2025)05-0068-13
作者:
杨程程12柳力1刘朝晖1张龙柯1
(1. 长沙理工大学 交通运输工程学院,湖南 长沙 410114; 2. 湖南警察学院 交通管理系,湖南 长沙 410138)
Author(s):
YANG Cheng-cheng12 LIU Li1 LIU Zhao-hui1 ZHANG Long-ke1
(1. School of Traffic and Transportation Engineering, Changsha University of Science and Technology,Changsha 410114, Hunan, China; 2. Department of Traffic Administration and Engineering, Hunan Police Academy, Changsha 410138, Hunan, China)
关键词:
道路工程 纤维沥青 试验研究 黏结性能 玄武岩纤维 纳米ATP 化学接枝
Keywords:
road engineering fiber asphalt experimental research bonding characteristics basalt fiber nano-attapulgite chemical grafting
分类号:
U414
DOI:
10.19721/j.cnki.1671-8879.2025.05.006
文献标志码:
A
摘要:
玄武岩纤维(BF)是一种优良的路面增强材料,但因其表面光滑、表面能低,导致与沥青界面黏结强度不足,限制了其路用性能的发挥。为提升BF与沥青的界面黏结强度,以纳米凹凸棒土(ATP)为接枝材料,运用化学接枝法,提出纳米ATP接枝BF(ATP-BF)的制备方法,通过电镜扫描、红外光谱、热稳定性能和吸持沥青性能等试验,分析ATP-BF的微观和路用性能,采用纤维拉拔试验、纤维改性沥青拉伸性能试验和分子动力学模拟等,研究ATP-BF与沥青的黏结性能及黏结机理。研究结果表明:纤维状纳米ATP密布包裹于BF表面,ATP-BF中出现“闪石双链”间桥氧Si—O—Si键,同时ATP-BF热稳定性能未发生明显变化,其吸持沥青率较原样BF提升了69.74%; ATP-BF从沥青中拔出的峰值荷载、界面剪切强度和拔出功分别为原样BF的1.16倍、1.16倍和1.90倍,ATP-BF改性沥青在拉伸过程中拉力峰值和延伸度值较原样BF改性沥青分别增大了5.34%和152.42%,同时拉力-延伸度曲线包覆的面积增大了53.96%; 分子动力学模拟显示,在相同温度下,纳米ATP与沥青的界面能均大于原样BF,其中298 K时纳米ATP与沥青的界面能较原样BF增加了21.37%,且原样BF和纳米ATP与沥青4组分中芳香分的界面能最高。
Abstract:
Basalt fiber(BF)is an excellent pavement reinforcement material, but due to its smooth surface and low surface energy, it leads to insufficient bond strength at the interface with asphalt, which limits its road performance. In order to enhance the interfacial bond strength between BF and asphalt, the preparation method of ATP grafted BF(ATP-BF)was proposed by using chemical grafting method with nano-attapulgite(ATP)as grafting material. The microscopic and road properties of ATP-BF were analyzed by scanning electron microscopy test, fourier transform infrared spectroscopy test, thermal stability test, and asphalt absorption test and holding properties test. The bonding properties and mechanisms of ATP-BF with asphalt were investigated using fiber pull-out test, fiber modified asphalt tensile properties test and molecular dynamics simulation. The results show that ATP densely wraps on the surface of BF, and there is a “amphibole double chain” bridging oxygen Si—O—Si bond in the ATP-BF. Meanwhile, the thermal stability of ATP-BF does not change significantly, and the rate of absorbing and holding asphalt increases by 69.74% compared with that of the original BF.The peak load, interfacial shear strength and pull out work of ATP-BF from asphalt are 1.16 times, 1.16 times and 1.90 times of the original BF, respectively. The values of peak tension and ductility of ATP-BF modified asphalt increase by 5.34% and 152.42%, respectively. At the same time, the area encompasse by the tension-ductility curve increased by 53.96%. Molecular dynamics simulation shows that the interfacial energy between ATP and asphalt at different temperatures is greater than that of the original BF. At 298 K, the interfacial energy between ATP and asphalt is 21.37% higher than that of the original BF, and the original BF and ATP have the highest interfacial energy with the aromatics in the four components of asphalt.9 tabs, 14 figs, 32 refs.

参考文献/References:

[1] 季 节,于淼章,王 涵,等.沥青混合料工作性能研究综述[J].中国公路学报,2024,37(9):170-185.
JI Jie, YU Miao-zhang, WANG Han, et al. Review on work ability of asphalt mixture[J]. China Journal of Highway and Transport, 2024, 37(9): 170-185.
[2]周育名,张 凯,郭云龙,等.PPA复合改性对沥青-集料黏附及其水稳定性影响研究[J].中国公路学报,2024,37(6):317-330.
ZHOU Yu-ming, ZHANG Kai, GUO Yun-long, et al. Effect of PPA composite modification on asphalt-aggregate adhesion and water stability[J]. China Journal of Highway and Transport, 2024, 37(6): 317-330.
[3]CHEN X, REN D Y, TIAN G S, et al. Investigation on moisture damage resistance of asphalt pavement in salt and acid erosion environments based on multi-scale analysis[J]. Construction and Building Materials, 2023, 366: 130177.
[4]WANG F Y, ZOU G Y, XU L, et al. Investigating the impact of calcium sulfate whisker on the microscopic properties of basalt fiber-reinforced asphalt using molecular dynamics simulation[J]. Construction and Building Materials, 2024, 421: 135643.
[5]杨程程,刘朝晖,柳 力,等.玄武岩纤维增强沥青混合料弯拉性能多参数敏感性分析[J].公路交通科技,2020,37(11):1-7.
YANG Cheng-cheng, LIU Zhao-hui, LIU Li, et al. Analysis on multiparameter sensitivity of flexural-tensile performance of basalt fiber reinforced asphalt mixture[J]. Journal of Highway and Transportation Research and Development, 2020, 37(11): 1-7.
[6]ZHANG Y J, LUO W B, LIU X. Experimental studies on the dynamic viscoelastic properties of basalt fiber-reinforced asphalt mixtures[J]. Science and Engineering of Composite Materials, 2021, 28: 489-498.
[7]CELAURO C, PRATICO F G. Asphalt mixtures modified with basalt fibres for surface courses[J]. Construction and Building Materials, 2018, 170: 245-253.
[8]郭寅川,刘洪昌,申爱琴,等.玄武岩纤维桥梁混凝土韧性特征及衰减规律[J].长安大学学报(自然科学版),2023,43(2):89-99.
GUO Yi-chuan, LIU Hong-chang, SHEN Ai-qin, et al. Toughness characteristics and attenuation law of basalt fiber bridge concrete[J]. Journal of Chang'an University(Natural Science Edition), 2023, 43(2): 89-99.
[9]柳 力,刘磊鑫,刘朝晖,等.碳纳米管接枝玄武岩纤维沥青胶浆的电愈合行为及机制[J].复合材料学报,2024,41(12):6614-6629.
LIU Li, LIU Lei-xin, LIU Zhao-hui, et al. Electrically healing behavior and mechanism of asphalt mortar with carbon nanotube grafted basalt fibers[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6614-6629.
[10]REN D Y, LUO W R, SU S N, et al. Study on crack resistance of basalt fiber reinforced asphalt mixture modified by titanate coupling agent based on digital image correlation[J]. Construction and Building Materials, 2024, 437: 136934.
[11]KANG J T, CHEN X X, YU Z C, et al. Study on the fatigue life and toughness of recycled aggregate concrete based on basalt fiber[J]. Materials Today Communications, 2024, 40:109397.
[12]姚华彦,王旭洋,扈惠敏,等.玄武岩纤维增强沥青混合料的抗裂性能[J].公路,2024,69(6):285-292.
YAO Hua-yan, WANG Xu-yang, HU Hui-min, et al. Cracking resistance of basalt fiber reinforced asphalt mixture[J]. Highway, 2024, 69(6): 285-292.
[13]TANG Q, XIAO P, LOU K K, et al. Interfacial characteristics of fiber asphalt mastic and aggregates: Impact on mixture crack resistance performance[J]. Construction and Building Materials, 2024, 414: 134866.
[14]YANG C C, LIU L, LIU Z H, et al. Study on the mechanism of bond strength generation and debonding failure between basalt fiber and asphalt based on molecular dynamics[J]. Case Studies in Construction Materials, 2023, 19: e02493.
[15]杨程程,柳 力,刘朝晖,等.基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J].材料导报,2024,38(6):280-286.
YANG Cheng-cheng, LIU Li, LIU Zhao-hui, et al. Study on the adhesion characteristics of silane coupling agent modified basalt fiber to asphalt based on molecular dynamics[J]. Materials Reports, 2024, 38(6): 280-286.
[16]LU C, SHAO H Q, CHEN N L, et al. Surface modification of polyimide fibers for high-performance composite by using oxygen plasma and silane coupling agent treatment[J]. Textile Research Journal, 2022, 92: 4899-4911.
[17]QIAN X W, HUANG J, JI X Y, et al. Modified basalt fibers boost performance of constructed wetlands: Comparison between surface coating and chemical grafting[J]. Bioresource Technology, 2024, 397: 130492.
[18]HOU X L,YAO S, WANG Z, et al. Enhancement of the mechanical properties of polylactic acid/basalt fiber composites via in-situ assembling silica nanospheres on the interface[J]. Journal of Materials Science & Technology, 2021, 84: 182-190.
[19]LI Y, SUN S Y, ZHOU Y, et al. Influence of air plasma modification power on surface properties of basalt fibers and basalt/poly(butylene succinate)adhesion[J]. Applied Surface Science, 2023, 630: 157416.
[20]张圣昌,钟天皓月,许启彬,等.玄武岩纤维表面硅烷偶联剂接枝率对环氧树脂复合材料界面强度及力学性能的影响[J].高分子材料科学与工程,2022,38(2):88-94.
ZHANG Sheng-chang, ZHONG Tian-hao-yue, XU Qi-bing, et al. Effects of silane coupling agent grafted on the surface of basalt fiber on the interfacial strength and tensile strength of fiber-reinforced epoxy composites[J]. Polymer Materials Science & Engineering, 2022, 38(2): 88-94.
[21]王志航,白二雷,任 彪,等.氧化石墨烯接枝碳纤维增强体改性混凝土的力学性能[J].复合材料学报,2024,41(10):5504-5515.
WANG Zhi-hang, BAI Er-lei, REN Biao, et al. Mechanical properties of concrete modified by graphene oxide grafted carbon fiber reinforcement[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5504-5515.
[22]楚电明,董乾鹏,白文娟,等.碳纤维/碳纳米管界面增强技术研究进展[J].化工新型材料,2023,51(1):1-7.
CHU Dian-ming, DONG Qian-peng, BAI Wen-juan, et al. Progress in carbon fiber/carbon nanotube interface enhancement technology[J]. New Chemical Materials, 2023, 51(1): 1-7.
[23]MAI K, KENSUKE N, ATSUSHI M, et al. Influence of covalently-bound graphene oxide on the mechanical properties of carbon fiber composite materials[J]. Diamond & Related Materials, 2022, 121: 108730.
[24]LI C Y, CUI Y Y, XING W J, et al. Secondary silane grafting on aramid fibers improves the interfacial bonding performance in textile composite materials[J]. Journal of Composite Materials, 2022, 56: 4421-4432.
[25]DING R Z, HE X W, HU Y, et al. Uniform grafting of amino-functionalized multi-walled carbon nanotubes on the surface of oxidized bamboo fiber to enhance the interfacial strength with epoxy resin[J]. Applied Surface Science, 2022, 603: 154480.
[26]吴春群,韩 康,栗登辉,等.凹凸棒土对3D打印水泥基材料工作性能及抗压强度的影响[J].硅酸盐通报,2024,43(5):1683-1693.
WU Chun-qun, HAN Kang, LI Deng-hui, et al. Effect of attapulgite clay on working performance and compressive strength of 3D printed cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(5): 1683-1693.
[27]阎 杰,杨 博,左军鹏,等.煅烧纳米凹凸棒土对再生混凝土抗冻性能影响研究[J].建筑科学,2024,40(3):86-92.
YAN Jie, YANG Bo, ZUO Jun-peng, et al. Effect of calcined nano-attapulgite on frost resistance of recycled concrete[J]. Building Science, 2024, 40(3): 86-92.
[28]MENG Z J, WANG Y X, LIU H, et al. Carbon fiber modified by attapulgite for preparing ultra-high molecular weight polyethylene composite with enhanced thermal, mechanical, and tribological properties[J]. Polymers for Advanced Technologies, 2022, 33: 4142-4151.
[29]YAN M L, JIAO W C, LI J, et al. Enhancement of the cryogenic-interfacial-strength of carbon fiber composites by chemical grafting of graphene oxide/attapulgite on T300[J]. Polymer Composites, 2020, 41: 5072-5081.
[30]娄可可.纤维沥青混合料界面黏结—破坏行为及抗裂性能预估[D].扬州:扬州大学,2023.
LOU Ke-ke. Interfacial bonding-failure behavior of fiber reinforced asphalt mixture and the prediction of its crack resistance property[D]. Yangzhou:Yangzhou University, 2023.
[31]JTG E20—2011,公路工程沥青及沥青混合料试验规程[S].
JTG E20—2011, standard test methods of bitumen and bituminous mixtures for highway engineering[S].
[32]LI D D, GREENFIELD M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):1.

备注/Memo

备注/Memo:
收稿日期:2025-02-22
基金项目:国家自然科学基金项目(52208423); 长沙市杰出创新青年培养计划项目(kq2306009)
作者简介:杨程程(1994-),女,江苏宿迁人,工学博士,E-mail:782592632@qq.com。
更新日期/Last Update: 2025-09-30