[1]凡涛涛,吕爽,司春棣,等.车-路耦合作用下路面结构动力响应研究方法综述[J].长安大学学报(自然科学版),2025,45(5):54-67.[doi:10.19721/j.cnki.1671-8879.2025.05.005]
 FAN Tao-tao,LYU Shuang,SI Chun-di,et al.Review of research methods on dynamic responses of pavement structures under vehicle-road coupling effect[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):54-67.[doi:10.19721/j.cnki.1671-8879.2025.05.005]
点击复制

车-路耦合作用下路面结构动力响应研究方法综述()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年5期
页码:
54-67
栏目:
道路工程
出版日期:
2025-09-30

文章信息/Info

Title:
Review of research methods on dynamic responses of pavement structures under vehicle-road coupling effect
文章编号:
1671-8879(2025)05-0054-14
作者:
凡涛涛12吕爽1司春棣2栗晓恒1
(1. 石家庄铁道大学 交通运输学院,河北 石家庄 050043; 2. 河北省交通安全与控制重点实验室,河北 石家庄 050043)
Author(s):
FAN Tao-tao12 LYU Shuang1 SI Chun-di2 LI Xiao-heng1
(1. School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043,Hebei, China; 2. Hebei Key Laboratory of Traffic Safety and Control, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China)
关键词:
道路工程 解析法 数值法 路面结构 车-路耦合
Keywords:
road engineering analytical method numerical method pavement structure vehicle-road coupling
分类号:
U416
DOI:
10.19721/j.cnki.1671-8879.2025.05.005
文献标志码:
A
摘要:
综述了车-路耦合作用下路面结构动力学理论与响应求解方法的研究现状,介绍了国内外包括车辆模型和道路模型在内的车-路耦合动力学模型与路面动力学行为影响因素,给出了解析法和数值法在分析不同车速、轴重和层间接触等影响下路面结构动力响应时的优缺点与适用范围,指出了车-路耦合作用下路面结构动力学研究发展方向。分析结果表明:轮胎与路面结构模型的单一研究已取得成熟成果,但实现动态轮胎力模型与黏弹性路面结构模型的复杂动态耦合关系的表征途径仍有待深入研究,定义动态材料模型并耦合高精度的车-路系统模型将成为重点研究方向; 车速和轴重对路面结构力学行为影响的研究成果很丰富,但对于路面结构层间接触状态,尤其是不完全连续状态时的车-路耦合作用下路面结构动力响应分析仍显不足; 由于层间接触状态具有类型多样、精准检测难的特点,使得层间接触对路面结构动力响应的模拟结果与实际结果存在明显差异,探索采用分布式参数法描述层间接触状态与建模技术,对提升路面结构动力响应结果的精准度具有重要意义; 解析法多用于求解各向同性路面结构动力响应,建立适用于路面结构各向异性材料特性的解析模型,并结合机器学习等方法实现解析模型的参数优化,是拓宽解析法在路面结构动力响应求解中应用的必然趋势; 数值法为解析车-路耦合动力学中材料各向异性、层间接触等复杂问题提供了技术支撑,借助多尺度建模方法实现轮胎-路面局部接触的精准刻画与动态演绎,并进行局部模型与整体模型的耦合与更新,将使数值法在车-路耦合动力学模拟中更具实用性。
Abstract:
The current research status of pavement structure dynamics theory and response solution methods under vehicle-road coupling effect was summarized. The vehicle-road coupling dynamics models including vehicle and road models at home and abroad and the influencing factors of pavement dynamics behaviors were introduced. The advantages, disadvantages and application scopes of analytical methods and numerical methods in analyzing the dynamic responses of pavement structures under the influences of different vehicle speeds, axle loads and interlayer contacts were presented. The research development direction of pavement structure dynamics under vehicle-road coupling effect was pointed out. The analysis results show that mature achievements have been made in the single research on tire models and pavement structure models. However, the characterization approach for realizing complex dynamic coupling relationship between dynamic tire force models and viscoelastic pavement structure models still needs in-depth research. Defining dynamic material models and coupling high-precision vehicle-road system models will become a key research direction. Research results on the influences of vehicle speed and axle load on mechanical behaviors of pavement structures are abundant. While the analysis of dynamic responses of pavement structures under vehicle-road coupling effect based on the interlayer contact state of pavement structure, especially based on the incomplete continuous state, is still insufficient. Due to the diverse types of interlayer contact states and the difficulty in precise detection, there are significant differences between the simulation results and the actual results of dynamic responses of pavement structures caused by interlayer contact. Exploring the application of distributed parameter method to describe the interlayer contact state and modeling technology is of great significance for improving the accuracy of dynamic response results of pavement structures. The analytical method is mostly used to solve the dynamic responses of isotropic pavement structures. Establishing analytical models suitable for anisotropic material properties of pavement structures and combining machine learning and other methods to optimize parameters of analytical models are inevitable trends to broaden the application approaches of analytical method in solving dynamic responses of pavement structures. The numerical method provides technical supports for solving complex problems such as material anisotropy and interlayer contact in the analysis of vehicle-road coupling dynamics. By using the multiscale modeling method to achieve precise characterization and dynamic deduction of local contact between tire and pavement, and conducting coupling and update of local model and overall model, the numerical method will be more practical in simulating the vehicle-road coupling dynamics.2 tabs, 3 figs, 95 refs.

参考文献/References:

[1] 翟婉明.车辆-轨道耦合动力学理论的发展与工程实践[J].科学通报,2022,67(32):3794-3807,3793.
ZHAI Wan-ming. Development of vehicle-track coupled dynamics theory and engineering practice[J]. Chinese Science Bulletin, 2022, 67(32): 3794-3807, 3793.
[2]罗 红,梁 波,吴志华,等.半车车辆-道路耦合动力分析模型的研究与应用[J].应用数学和力学,2014,35(7):737-749.
LUO Hong, LIANG Bo, WU Zhi-hua, et al. Study and application of a 4-DOF 1/2 vehicle-road coupling dynamic model[J]. Applied Mathematics and Mechanics, 2014, 35(7): 737-749.
[3]MAMLOUK M S. General outlook of pavement and vehicle dynamics[J]. Journal of Transportation Engineering, 1997, 123(6): 515-517.
[4]李皓玉,杨绍普,李韶华.车、路的相互作用下沥青路面动力学特性分析[J].振动与冲击,2009,28(4):86-89,102,205.
LI Hao-yu, YANG Shao-pu, LI Shao-hua. Dynamical analysis of an asphalt pavement due to vehicle-road interaction[J]. Journal of Vibration and Shock, 2009, 28(4): 86-89, 102, 205.
[5]杨绍普,张俊宁,路永婕,等.汽车-道路相互作用研究进展[J].机械工程学报,2021,57(12):1-17.
YANG Shao-pu, ZHANG Jun-ning, LU Yong-jie, et al. Research progress of vehicle-pavement interaction[J]. Journal of Mechanical Engineering, 2021, 57(12): 1-17.
[6]杨 燕,丁 虎,陈立群.车路耦合非线性振动高阶Galerkin截断研究[J].应用数学和力学,2013,34(9):881-890.
YANG Yan, DING Hu, CHEN Li-qun. Nonlinear vibration of vehicle-pavement coupled system based on high-order Galerkin truncation[J]. Applied Mathematics and Mechanics, 2013, 34(9): 881-890.
[7]李树志.车辆与路面相互作用系统动力学理论与仿真研究[D].长沙:湖南大学,2015.
LI Shu-zhi. Dynamic theory and simulation research on interaction between vehicle and pavement[D]. Changsha: Hunan University, 2015.
[8]李皓玉,杨绍普,刘 进,等.移动分布荷载下层状粘弹性体系的动力响应分析[J].工程力学,2015,32(1):120-127.
LI Hao-yu, YANG Shao-pu, LIU Jin, et al. Dynamic response in multilayered viscoelastic medium generated by moving distributed loads[J]. Engineering Mechanics, 2015, 32(1): 120-127.
[9]马宪永,全蔚闻,董泽蛟.横观各向同性黏弹性沥青路面动力响应解析解[J].中国公路学报,2020,33(10):135-145.
MA Xian-yong, QUAN Wei-wen, DONG Ze-jiao. Analytical solution for dynamic response of transversely isotropic viscoelastic asphalt pavement[J]. China Journal of Highway and Transport, 2020, 33(10): 135-145.
[10]AMOUSHAHI H, AZHARI M. Static analysis and buckling of viscoelastic plates by a fully discretized nonlinear finite strip method using bubble functions[J]. Composite Structures, 2013, 100: 205-217.
[11]AMOUSHAHI H, AZHARI M. Static and instability analysis of moderately thick viscoelastic plates using a fully discretized nonlinear finite strip formulation[J]. Composites Part B: Engineering, 2014, 56: 222-231.
[12]HARDY M S A, CEBON D. Response of continuous pavements to moving dynamic loads[J]. Journal of Engineering Mechanics, 1993, 119(9): 1762-1780.
[13]CHEN X B, ZHANG J S, WANG X. Full-scale field testing on a highway composite pavement dynamic responses[J]. Transportation Geotechnics, 2015, 4: 13-27.
[14]AI C F, RAHMAN A, XIAO C, et al. Analysis of measured strain response of asphalt pavements and relevant prediction models[J]. International Journal of Pavement Engineering, 2017, 18(12): 1089-1097.
[15]SARKAR A. Numerical comparison of flexible pavement dynamic response under different axles[J]. International Journal of Pavement Engineering, 2016, 17(5): 377-387.
[16]杜 磊.基于车路耦合系统的路面动力分析及疲劳寿命研究[D].重庆:重庆交通大学,2017.
DU Lei. The study about pavement dynamic analysis and fatigue life basing on vehicle road coupling system[D]. Chongqing: Chongqing Jiaotong University, 2017.
[17]刘大维,戴宗宏,陈 洋,等.车辆多轮动载作用下柔性路面动应力响应[J].中国公路学报,2017,30(11):36-44.
LIU Da-wei, DAI Zong-hong, CHEN Yang, et al. Dynamic stress response of flexible pavement under multiple wheel dynamic loads of vehicle[J]. China Journal of Highway and Transport, 2017, 30(11): 36-44.
[18]许海亮,何兆才,何 炼.车路耦合条件下沥青混凝土路面变形特性时域分析[J].公路交通科技,2017,34(12):16-22.
XU Hai-liang, HE Zhao-cai, HE Lian. Analysis on asphalt concrete pavement deformation characteristics time-domain considering vehicle-pavement coupling effect[J]. Journal of Highway and Transportation Research and Development, 2017, 34(12): 16-22.
[19]YAN K Z, SHI T W, YOU L Y, et al. Spectral element method for dynamic response of multilayered half medium subjected to harmonic moving load[J]. International Journal of Geomechanics, 2018, 18(12):
04018161.
[20]AI Z Y, XU C J, REN G P. Vibration of a pre-stressed plate on a transversely isotropic multilayered half-plane due to a moving load[J]. Applied Mathematical Modelling, 2018, 59: 728-738.
[21]张 锋,臧宏阳,冯德成,等.模量不均匀路基上的沥青路面动力响应研究[J].土木工程学报,2018,51(3):115-122.
ZHANG Feng, ZANG Hong-yang, FENG De-cheng, et al. Moving truck-induced dynamic response of asphalt pavement supported by subgrade with non-uniform modulus[J]. China Civil Engineering Journal, 2018, 51(3): 115-122.
[22]YOU L Y, YAN K Z, LIU N Y, et al. Assessing the mechanical responses for anisotropic multi-layered medium under harmonic moving load by spectral element method(SEM)[J]. Applied Mathematical Modelling, 2019, 67: 22-37.
[23]SI C D, SU X, CHEN E L, et al. Comparative study on dynamic response of deck pavement of two kinds of box girder bridges under moving loads[J]. Shock and Vibration, 2019, 2019(1): 6052745.
[24]CHUN S, KIM K, GREENE J, et al. Evaluation of interlayer bonding condition on structural response characteristics of asphalt pavement using finite element analysis and full-scale field tests[J]. Construction and Building Materials, 2015, 96: 307-318.
[25]肖 军,彭妙娟.沥青路面弹塑性动力响应分析[J].力学季刊,2018,39(2):374-382.
XIAO Jun, PENG Miao-juan. Analysis for elasto-plastic and dynamic response of asphalt pavement[J]. Chinese Quarterly of Mechanics, 2018, 39(2): 374-382.
[26]彭妙娟,吴 超.层间摩阻力下中面层及动荷载对沥青路面车辙影响的有限元分析[J].公路,2016,61(3):1-6.
PENG Miao-juan, WU Chao. Finite element analysis for the rutting of asphalt pavement under middle course and dynamic load base on interlaminar friction stress[J]. Highway, 2016, 61(3): 1-6.
[27]AI Z Y, REN G P. Dynamic analysis of a transversely isotropic multilayered half-plane subjected to a moving load[J]. Soil Dynamics and Earthquake Engineering, 2016, 83: 162-166.
[28]AI Z Y, LIU W J, SHI B K. Quasi-static interaction between non-uniform beams and anisotropic permeable saturated multilayered soils with elastic superstrata[J]. Applied Mathematical Modelling, 2018, 53: 400-418.
[29]董 城,周 轮,陈丽萍,等.基于不同行驶状态下轮胎-路面接触应力响应研究[J].公路工程,2018,43(6):146-150,188.
DONG Cheng, ZHOU Lun, CHEN Li-ping, et al. Study on the stress response of tire-pavement based on different driving conditions[J]. Highway Engineering, 2018, 43(6): 146-150, 188.
[30]颜可珍,满建宏,石挺魏,等.考虑层间接触状态的横观各向同性结构动力响应解析解[J].湖南大学学报(自然科学版),2019,46(11):97-105.
YAN Ke-zhen, MAN Jian-hong, SHI Ting-wei, et al. Analytical solution for dynamic response of transversely isotropic structures considering the state of interlayer contact state[J]. Journal of Hunan University(Natural Sciences), 2019, 46(11): 97-105.
[31]叶 永,程 露,姚惠芹.不同层间接触状态下沥青路面动力响应分析[J].公路,2021,66(5):43-48.
YE Yong, CHENG Lu, YAO Hui-qin. Dynamic response analysis of asphalt pavement based on different interlayer contact[J]. Highway, 2021, 66(5): 43-48.
[32]刘小云,田润利.移动荷载作用下沥青路面稳态响应与计算[J].力学与实践,2009,31(3):64-68.
LIU Xiao-yun, TIAN Run-li. Steady dynamic response and calculation on asphalt pavement subjected to moving load[J]. Mechanics in Engineering, 2009, 31(3): 64-68.
[33]吕彭民,史春娟.基于小波理论的沥青路面稳态响应解析解研究[J].计算力学学报,2012,29(5):806-810.
LYU Peng-min, SHI Chun-juan. Analysis solution study of steady response on asphalt road based on the wavelet theory[J]. Chinese Journal of Computational Mechanics, 2012, 29(5): 806-810.
[34]周玉民,谈至明,刘伯莹.1/4车-路耦合动力学模型研究[J].同济大学学报(自然科学版),2012,40(3):408-413.
ZHOU Yu-min, TAN Zhi-ming, LIU Bo-ying. Quarter vehicle-road coupling dynamics models[J]. Journal of Tongji University(Natural Science), 2012, 40(3): 408-413.
[35]VOSOUGHI A R, MALEKZADEH P, RAZI H. Response of moderately thick laminated composite plates on elastic foundation subjected to moving load[J]. Composite Structures, 2013, 97: 286-295.
[36]LEE H S. Viscowave—a new solution for viscoelastic wave propagation of layered structures subjected to an impact load[J]. International Journal of Pavement Engineering, 2014, 15(6): 542-557.
[37]XU Q W, PROZZI J A. A time-domain finite element method for dynamic viscoelastic solution of layered-half-space responses under loading pulses[J]. Computers and Structures, 2015, 160: 20-39.
[38]CHEN L. Green's function for a transversely isotropic multi-layered half-space: an application of the precise integration method[J]. Acta Mechanica, 2015, 226(11): 3881-3904.
[39]CAI Y C, SANGGHALEH A, PAN E N. Effect of anisotropic base/interlayer on the mechanistic responses of layered pavements[J]. Computers and Geotechnics, 2015, 65: 250-257.
[40]JANNOUN G, HACHEM E, VEYSSET J, et al. Anisotropic meshing with time-stepping control for unsteady convection-dominated problems[J]. Applied Mathematical Modelling, 2015, 39(7): 1899-1916.
[41]YAN K Z, XU H B, YOU L Y. Analytical layer-element approach for wave propagation of transversely isotropic pavement[J]. International Journal of Pavement Engineering, 2016, 17(3): 275-282.
[42]AI Z Y, REN G P. Dynamic response of an infinite beam on a transversely isotropic multilayered half-space due to a moving load[J]. International Journal of Mechanical Sciences, 2017, 133: 817-828.
[43]AI Z Y, MU J J, REN G P. 3D dynamic response of a transversely isotropic multilayered medium subjected to a moving load[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(4): 636-654.
[44]CHEN S Q, WANG D S, DU R R, et al. Elastic multilayered pavement under an elliptical vertical load: analytical solutions and program verification[J]. Road Materials and Pavement Design, 2019, 20(2): 297-315.
[45]RAMESHKHAH S, MALAKOUTI OLOUNABADI M, MALEKZADEH P, et al. Dynamic response analysis of viscoelastic pavement using differential quadrature element method[J]. International Journal of Pavement Engineering, 2020, 21(11): 1321-1335.
[46]张军辉,范海山,张石平,等.考虑层间接触状态的路面动力响应解析解及参数反演[J].中国公路学报,2021,34(5):11-23.
ZHANG Jun-hui, FAN Hai-shan, ZHANG Shi-ping, et al. Analytical solution for the dynamic responses and parameter inversion of pavement structures considering the condition of interlayer contact[J]. China Journal of Highway and Transport, 2021, 34(5): 11-23.
[47]张 霞,陈恩利,李凌云.多车荷载作用下沥青桥面铺装动力学响应[J].振动与冲击,2021,40(11):109-115,133.
ZHANG Xia, CHEN En-li, LI Ling-yun. Dynamic response of asphalt bridge deck pavement under multi-vehicle load[J]. Journal of Vibration and Shock, 2021, 40(11): 109-115, 133.
[48]马宪永,董泽蛟,全蔚闻.车辆移动荷载下黏弹性沥青路面的弹性等效方法[J].土木工程学报,2022,55(8):118-128.
MA Xian-yong, DONG Ze-jiao, QUAN Wei-wen. Elastic equivalence method for viscoelastic asphalt pavement subjected to vehicle moving load[J]. China Civil Engineering Journal, 2022, 55(8): 118-128.
[49]路永婕,张俊宁,李皓玉,等.基于非均匀接触的轮胎-道路系统耦合动力学研究[J].机械工程学报,2021,57(12):87-98.
LU Yong-jie, ZHANG Jun-ning, LI Hao-yu, et al. Research on tire-road system coupling dynamics based on non-uniform contact[J]. Journal of Mechanical Engineering, 2021, 57(12): 87-98.
[50]ZHANG J N, YANG S P, LI S H, et al. Study on crack propagation path of asphalt pavement under vehicle-road coupled vibration[J]. Applied Mathematical Modelling, 2022, 101: 481-502.
[51]CUI X Z, LI X Y, HAO J W, et al. Dynamic response of unsaturated poroelastic ground underlying uneven pavement subjected to vehicle load[J]. Soil Dynamics and Earthquake Engineering, 2022, 156: 107164.
[52]QUAN W W, MA X Y, SI C D, et al. Wave propagation approach for dynamic responses of transversely isotropic viscoelastic pavement under impact load[J]. Road Materials and Pavement Design, 2022, 23(9): 2076-2097.
[53]高嫄嫄,焦彦鹏,王 鹏,等.层间连续条件对沥青路面动力特性影响的研究[J].重庆交通大学学报(自然科学版),2023,42(9):36-41.
GAO Yuan-yuan, JIAO Yan-peng, WANG Peng, et al. Influence of interlayer continuity conditions on the dynamic characteristics of asphalt pavement[J]. Journal of Chongqing Jiaotong University(Natural Science), 2023, 42(9): 36-41.
[54]GU X Y, WANG L B, CHENG S, et al. Dynamic response of pavement under FWD using spectral element method[J]. KSCE Journal of Civil Engineering, 2014, 18(4): 1047-1052.
[55]YOU L Y, YAN K Z, HU Y B, et al. Spectral element method for dynamic response of transversely isotropic asphalt pavement under impact load[J]. Road Materials and Pavement Design, 2018, 19(1): 223-238.
[56]HAN Z J, YANG L Q, FANG H Y, et al. Dynamic simulation of falling weight deflectometer tests on flexible transversely isotropic layered pavements[J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106353.
[57]史春娟,吕彭民.基于非线性模型的沥青路面动力响应研究[J].工程力学,2013,30(2):326-331,347.
SHI Chun-juan, LYU Peng-min. Study on the dynamic response of asphalt pavement based on the nonlinear viscoelastic model[J]. Engineering Mechanics, 2013, 30(2): 326-331, 347.
[58]阳恩慧,艾长发,邱延峻.采用刚度矩阵法的弹性层状体系数值解法[J].交通运输工程学报,2014,14(4):14-24.
YANG En-hui, AI Chang-fa, QIU Yan-jun. Numerical method of multi-layer elastic system by using stiffness matrix method[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 14-24.
[59]寇 磊,白 云.直角坐标系下层状黏弹性地基Biot固结解析刚度矩阵解[J].应用数学和力学,2016,37(1):84-96.
KOU Lei, BAI Yun. Analytical stiffness matrixes for biot consolidation of multilayered viscoelastic foundations in the cartesian coordinate system[J]. Applied Mathematics and Mechanics, 2016, 37(1): 84-96.
[60]ZHAO Y Q, NI Y B, WANG L, et al. Viscoelastic response solutions of multilayered asphalt pavements[J]. Journal of Engineering Mechanics, 2014, 140(10):
04014080.
[61]VARMA S, KUTAY M E. Viscoelastic nonlinear multilayered model for asphalt pavements[J]. Journal of Engineering Mechanics, 2016, 142(7): 04016044.
[62]THOMSON W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics, 1950, 21(2): 89-93.
[63]韩泽军,林 皋,周小文.三维横观各向同性层状地基任意点格林函数求解[J].岩土工程学报,2016,38(12):2218-2225.
HAN Ze-jun, LIN Gao, ZHOU Xiao-wen. Solution to Green's functions for arbitrary points in 3D cross-anisotropic multi-layered soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2218-2225.
[64]FAN H S, ZHANG J H, ZHENG J L. Dynamic response of a multi-layered pavement structure with subgrade modulus varying with depth subjected to a moving load[J]. Soil Dynamics and Earthquake Engineering, 2022, 160: 107358.
[65]DONG Z J, MA X Y. Analytical solutions of asphalt pavement responses under moving loads with arbitrary non-uniform tire contact pressure and irregular tire imprint[J]. Road Materials and Pavement Design, 2018, 19(8): 1887-1903.
[66]王 妍,林 皋.三维层状路面结构动力响应的混合变量法[J].岩土工程学报,2018,40(12):2231-2240.
WANG Yan, LIN Gao. Mixed variable formulation for dynamic response of 3D layered road structures[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2231-2240.
[67]WANG H. Analysis of tire-pavement interaction and pavement responses using a decoupled modeling approach[D]. Champaign: University of Illinois at Urbana—Champaign, 2011.
[68]董泽蛟,肖桂清,龚湘兵,等.重载沥青路面结构组合的抗车辙性能分析[J].哈尔滨工业大学学报,2014,46(6):72-78.
DONG Ze-jiao. XIAO Gui-qing, GONG Xiang-bing, et al. Rutting resistance analysis of structure combinations for asphalt pavement subjected to heavy loads[J]. Journal of Harbin Institute of Technology, 2014, 46(6): 72-78.
[69]WANG H, LI M Y, GARG N. Airfield flexible pavement responses under heavy aircraft and high tire pressure loading[J]. Transportation Research Record, 2015, 2501(1): 31-39.
[70]WANG H, LI M Y, GARG N. Investigation of shear failure in airport asphalt pavements under aircraft ground manoeuvring[J]. Road Materials and Pavement Design, 2017, 18(6): 1288-1303.
[71]HERNANDEZ J A, AL-QADI I L. Tire-pavement interaction modelling: Hyperelastic tire and elastic pavement[J]. Road Materials and Pavement Design, 2017, 18(5): 1067-1083.
[72]BESKOU N D, HATZIGEORGIOU G D, THEODORAKOPOULOS D D. Dynamic inelastic analysis of 3-D flexible pavements under moving vehicles: A unified FEM treatment[J]. Soil Dynamics and Earthquake Engineering, 2016, 90: 420-431.
[73]HAMIM A, YUSOFF N I M, CEYLAN H, et al. Comparative study on using static and dynamic finite element models to develop FWD measurement on flexible pavement structures[J]. Construction and Building Materials, 2018, 176: 583-592.
[74]王 扬,王丽娟,路永婕,等.复杂移动轮胎力作用下沥青路面黏弹性力学行为模拟研究[J].振动与冲击,2017,36(15):181-186.
WANG Yang, WANG Li-juan, LU Yong-jie, et al. Simulation on viscoelastic behavior of asphalt pavement under complex moving wheel load[J]. Journal of Vibration and Shock, 2017, 36(15): 181-186.
[75]JIANG X, ZENG C, GAO X F, et al. 3D FEM analysis of flexible base asphalt pavement structure under non-uniform tyre contact pressure[J]. International Journal of Pavement Engineering, 2019, 20(9): 999-1011.
[76]严战友,王 震,陈嘉信,等.基于温度-车辆荷载作用下沥青路面细观力学响应[J].北京交通大学学报,2020,44(3):118-128.
YAN Zhan-you, WANG Zhen, CHEN Jia-xin, et al. Micromechanical response of asphalt pavement under temperature-vehicle load[J]. Journal of Beijing Jiaotong University, 2020, 44(3): 118-128.
[77]严战友,王朝辉,陈恩利,等.离散元法的沥青路面车-路动力学响应分析[J].中国公路学报,2019,32(9):51-60,79.
YAN Zhan-you, WANG Zhao-hui, CHEN En-li, et al. Dynamic response analysis of vehicle-load on asphalt pavement based on discrete element method[J]. China Journal of Highway and Transport, 2019, 32(9): 51-60, 79.
[78]ASSOGBA O C, TAN Y Q, SUN Z Q, et al. Effect of vehicle speed and overload on dynamic response of semi-rigid base asphalt pavement[J]. Road Materials and Pavement Design, 2021, 22(3): 572-602.
[79]LIU Y, XU X N, HUANG Z R, et al. Discrete-continuous coupling simulation and analysis for asphalt pavement dynamic stress responses under a moving wheel load[J]. Case Studies in Construction Materials, 2023, 18: e01932.
[80]陈静云,孙依人.基于接触非线性的车-路耦合系统动力响应分析[J].振动与冲击,2013,32(19):119-124.
CHEN Jing-yun, SUN Yi-ren. Dynamic response of a vehicle-road coupled system based on non-linear contact[J]. Journal of Vibration and Shock, 2013, 32(19): 119-124.
[81]AHMED M, RAHMAN A, ISLAM M R, et al. Combined effect of asphalt concrete cross-anisotropy and temperature variation on pavement stress-strain under dynamic loading[J]. Construction and Building Materials, 2015, 93: 685-694.
[82]TAREFDER R A, AHMED M U, RAHMAN A. Effects of cross-anisotropy and stress-dependency of pavement layers on pavement responses under dynamic truck loading[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 366-377.
[83]颜可珍,胡迎斌,游凌云,等.横观各向同性沥青路面结构动力响应分析[J].公路交通科技,2017,34(5):1-9.
YAN Ke-zhen, HU Ying-bin, YOU Ling-yun, et al. Analysis on dynamical response of cross-anisotropic asphalt pavement structure[J]. Journal of Highway and Transportation Research and Development, 2017, 34(5): 1-9.
[84]ZHANG Y Q, GU F, LUO X, et al. Modeling stress-dependent anisotropic elastoplastic unbound granular base in flexible pavements[J]. Transportation Research Record, 2018, 2672(52): 46-56.
[85]CASTILLO D, AL-QADI I. Importance of heterogeneity in asphalt pavement modeling[J]. Journal of Engineering Mechanics, 2018, 144(8): 04018060.
[86]YOU T, KIM Y R, RAMI K Z, et al. Multiscale modeling of asphaltic pavements: Comparison with field performance and parametric analysis of design variables[J]. Journal of Transportation Engineering, Part B: Pavements, 2018, 144(2): 04018012.
[87]ALLEN D H, LITTLE D N, SOARES R F, et al. Multi-scale computational model for design of flexible pavement—Part Ⅰ: Expanding multi-scaling[J]. International Journal of Pavement Engineering, 2017, 18(4): 309-320.
[88]CASTILLO D, GAMEZ A, AL-QADI I. Homogeneous versus heterogeneous response of a flexible pavement structure: strain and domain analyses[J]. Journal of Engineering Mechanics, 2019, 145(9): 04019068.
[89]高鹏永,陈恩利,常伟锋,等.车路相互作用下沥青路面材料弯曲破坏研究[J].建筑材料学报,2020,23(4):912-919.
GAO Peng-yong, CHEN En-li, CHANG Wei-feng, et al. Bending failure of asphalt pavement materials under vehicle-road interaction[J]. Journal of Building Materials, 2020, 23(4): 912-919.
[90]SI C D, ZHOU X D, YOU Z P, et al. Micro-mechanical analysis of high modulus asphalt concrete pavement[J]. Construction and Building Materials, 2019, 220: 128-141.
[91]YAN Z Y, CHEN E L, WANG Z, et al. Research on mesoscopic response of asphalt pavement structure under vibration load[J]. Shock and Vibration, 2019, 2019(1): 2620305.
[92]黄 优,潘 宇,肖 滨,等.考虑温湿度作用的粒料基层沥青路面结构非线性力学行为[J]. 长安大学学报(自然科学版),2024,44(1):24-35.
HUANG You, PAN Yu, XIAO Bin, et al. Nonlinear mechanical behavior of granular base asphalt pavement structure under action of temperature and moisture[J]. Journal of Chang'an University(Natural Science Edition), 2024, 44(1): 24-35.
[93]王 妍, 林 皋,李志远.移动荷载下各向异性层状地基-柔性路面结构动力响应的半解析解[J].工程力学,2023,40(12):1-12.
WANG Yan, LIN Gao, LI Zhi-yuan. Semi-analytical solution for dynamic response of anisotropic layered foundation-flexible pavement structure under moving loads[J]. Engineering Mechanics, 2023, 40(12): 1-12.
[94]徐希忠,韦金城,张晓萌,等.基于力学响应的全厚式高模量沥青路面结构组合及优化[J].科学技术与工程,2022,22(11):4581-4587.
XU Xi-zhong, WEI Jin-cheng, ZHANG Xiao-meng, et al. Combination and optimization of full depth high modulus asphalt pavement structure based on mechanical response[J]. Science Technology and Engineering, 2022, 22(11): 4581-4587.
[95]董 倩,程少锋,张献民,等.车路耦合荷载下沥青混凝土路面振动响应研究[J].北京航空航天大学学报,2023,49(9):2385-2394.
DONG Qian, CHENG Shao-feng, ZHANG Xian-min, et al. Vibration response of asphalt concrete pavement under vehicle-road coupled load[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(9): 2385-2394.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):1.

备注/Memo

备注/Memo:
收稿日期:2025-02-28
基金项目:国家自然科学基金项目(11972237)
作者简介:凡涛涛(1990-),男,河南安阳人,讲师,工学博士,E-mail:fantaotao@stdu.edu.cn。
通信作者:司春棣(1980-),女,河北邯郸人,教授,博士研究生导师,E-mail:sichundi@stdu.edu.cn。
更新日期/Last Update: 2025-09-30