[1]徐金枝,庄严,张滨焌.泡沫沥青温拌再生中新旧沥青扩散融合程度[J].长安大学学报(自然科学版),2025,45(5):30-40.[doi:10.19721/j.cnki.1671-8879.2025.05.003]
 XU Jin-zhi,ZHUANG Yan,ZHANG Bin-jun.Diffusion and blending degree between virgin and aged asphalts in warm recycling of foamed asphalt[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):30-40.[doi:10.19721/j.cnki.1671-8879.2025.05.003]
点击复制

泡沫沥青温拌再生中新旧沥青扩散融合程度()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年5期
页码:
30-40
栏目:
道路工程
出版日期:
2025-09-30

文章信息/Info

Title:
Diffusion and blending degree between virgin and aged asphalts in warm recycling of foamed asphalt
文章编号:
1671-8879(2025)05-0030-11
作者:
徐金枝1庄严2张滨焌3
(1. 长安大学 公路学院,陕西 西安 710064; 2. 甘肃公航旅路业有限公司,甘肃 兰州 730070; 3. 中交第二公路工程局有限公司 工程设计研究院,陕西 西安 710065)
Author(s):
XU Jin-zhi1 ZHUANG Yan2 ZHANG Bin-jun3
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Gansu HATG Road Industry Co., Ltd., Lanzhou 730070, Gansu, China; 3. Engineering Design and Research Institute CCCC Second Highway Engineering Bureau Co., Ltd., Xi'an 710065, Shaanxi, China)
关键词:
道路工程 泡沫沥青温拌再生 新旧沥青扩散融合程度 抗车辙因子 疲劳寿命 表面微观黏附力 分子量分布
Keywords:
road engineering warm recycling of foamed asphalt diffusion and blending degree between virgin and aged asphalts rutting resistance factor fatigue life surface microscopic adhesion molecular weight distribution
分类号:
U414
DOI:
10.19721/j.cnki.1671-8879.2025.05.003
文献标志码:
A
摘要:
为探究泡沫沥青温拌再生中新旧沥青的扩散融合程度,设计竖向分层渗透模型进行模拟研究。针对泡沫沥青与老化沥青扩散融合不同时间后形成不同层位的泡沫温拌再生沥青,采用分层环状容器进行分离和获取,再分别采用动态剪切流变(DSR)试验、线性振幅扫描(LAS)试验、原子力显微镜(AFM)试验和凝胶渗透色谱(GPC)试验,对不同泡沫温拌再生沥青的宏观及微观技术性能开展测试分析,并与采用热沥青/再生剂的测试结果进行对比研究。研究结果表明:自新旧沥青界面向老化沥青中深入,不同层位泡沫温拌再生沥青的抗车辙因子及其中的大尺寸分子含量(质量分数)逐渐增大,而其疲劳寿命、表面微观黏附力及中、小尺寸分子含量均逐渐降低,反映出泡沫沥青在老化沥青中的扩散融合程度随深度增大而减小; 延长相互作用时间,泡沫沥青与老化沥青间的扩散融合程度逐渐提高,常温条件下两相间的扩散融合仍持续缓慢进行; 与泡沫沥青及热沥青相比,再生剂在老化沥青中具有相对较强的渗透扩散能力; 温拌再生条件下泡沫沥青与老化沥青的扩散融合程度与热再生中新旧沥青的相互作用程度接近,2种再生方式下新沥青对老化沥青性能的恢复效果无明显差异。
Abstract:
To investigate the diffusion and blending degree between virgin and aged asphalts in warm recycling of foamed asphalt, a vertical layered distribution model was developed to carry out the simulation study. The foamed warm reclaimed asphalt in different layers formed after various times of diffusion and blending between foamed asphalt and aged asphalts, was separated and obtained by layered annular container. Dynamic shear rheology(DSR)test, linear amplitude scanning(LAS)test, atomic force microscopy(AFM)test, and gel permeation chromatography(GPC)test were applied respectively to analyze the macroscopic and microscopic technical properties of different foamed warm reclaimed asphalts, and the results were also compared with those of reclaimed asphalt formed with hot asphalt and rejuvenator. The results show that, from the interface of the two kinds of asphalts towards to the aged asphalt, the rutting resistance factor of foamed warm reclaimed asphalt in different layers and the content of large sized molecules gradually increase, while the fatigue life, surface microscopic adhesion force and the content of medium and small sized molecules gradually decrease, indicating the diffusion and blending degree of foamed asphalt in aged asphalt decreases with the increasing depth. The diffusion and blending degree between foamed asphalt and aged asphalt gradually raises with the extension of interaction time and the diffusion and blending between the two phases continue slowly under ambient conditions. Compared with foamed asphalt and hot asphalt, rejuvenator has a relatively better penetration and diffusion capacity in aged asphalt. The diffusion and blending degree between foamed asphalt and aged asphalt in warm recycling is similar to that between hot virgin asphalt and aged asphalt in hot recycling. No obvious discrepancy has been found about the reclaimed effect on aged asphalt with the two recycling methods.4 tabs, 11 figs, 29 refs.

参考文献/References:

[1] HETTIARACHCHI C, HOU X D, WANG J Y, et al. A comprehensive review on the utilization of reclaimed asphalt material with warm mix asphalt technology[J]. Construction and Building Materials, 2019, 227: 117096.
[2]KRISTJÁNSDÓTTIR Ó, MUENCH S T, MICHAEL L, et al. Assessing potential for warm-mix asphalt technology adoption[J]. Transportation Research Record, 2007(2040): 91-99.
[3]DOYLE J D, MEJIAS-SANTIAGO M, BROWN E R, et al. Performance of high RAP-WMA surface mixtures[J]. Asphalt Paving Technology 2011, 2011: 419-453.
[4]SHU X, HUANG B S, SHRUM E D, et al. Laboratory evaluation of moisture susceptibility of foamed warm mix asphalt containing high percentages of RAP[J]. Construction and Building Materials, 2012, 35: 125-130.
[5]BUSS A, CASCIONE A, WILLIAMS R C. Evaluation of warm mix asphalt containing recycled asphalt shingles[J]. Construction and Building Materials, 2014, 61: 1-9.
[6]NAZZAL M D, MOGAWER W, KAYA S, et al. Multiscale evaluation of the composite asphalt binder in high-reclaimed asphalt pavement mixtures[J]. Journal of Materials in Civil Engineering, 2014, 26(7): 04014019.
[7]HASAN M R M, YOU Z P, YANG X. A comprehensive review of theory, development, and implementation of warm mix asphalt using foaming techniques[J]. Construction and Building Materials, 2017, 152: 115-133.
[8]CANESTRARI F, MARIANI E, INGRASSIA L P. Use of Wehner-Schulze machine to evaluate pavement skid resistance: A review, 2024[J]. Journal of Traffic and Transportation Engineering(English Edition), 2024, 11(5): 896-917.
[9]SHIRODKAR P, MEHTA Y, NOLAN A, et al. A study to determine the degree of partial blending of reclaimed asphalt pavement(RAP)binder for high rap hot mix asphalt[J]. Construction and Building Materials, 2011, 25(1): 150-155.
[10]NAHAR S N, MOHAJERI M, SCHMETS A J M, et al. First observation of blending zone morphology at interface of reclaimed asphalt binder and virgin bitumen[J]. Transportation Research Record, 2013(2370): 1-9.
[11]BOWERS B F, HUANG B S, SHU X, et al. Investigation of reclaimed asphalt pavement blending efficiency through GPC and FTIR[J]. Construction and Building Materials, 2014, 50: 517-523.
[12]KRIZ P, GRANT D L, VELOZA B A, et al. Blending and diffusion of reclaimed asphalt pavement and virgin asphalt binders[J]. Road Materials and Pavement Design, 2014, 15: 78-112.
[13]ZAUMANIS M, MALLICK R B. Review of very high-content reclaimed asphalt use in plant-produced pavements: state of the art[J]. International Journal of Pavement Engineering, 2015, 16(1): 39-55.
[14]DRUTA C, WANG L B, ZHU T L. Laboratory investigation of reclaimed asphalt pavement mixed with pure binder using X-ray CT scanner[C]// ICCTP. Critical Issues in Transportion Systems Planning, Development, and Management. New York: ICCTP, 2009: 2611-2620.
[15]NGUYEN V H. Effects of laboratory mixing methods and rap materials on performance of hot recycled asphalt mixtures[D]. Nottingham: The University of Nottingham, 2009.
[16]唐礼泉.沥青混合料厂拌热再生应用技术研究[D].西安:长安大学,2013.
TANG Li-quan. Research on application technology of plant mixed hot recycling of asphalt mixture[D]. Xi'an: Chang'an University, 2013.
[17]刘朝晖,高新文,翟 龙,等.再生沥青中新旧沥青扩散特性[J].长安大学学报(自然科学版),2018,38(5):18-24.
LIU Zhao-hui, GAO Xin-wen, ZHAI Long, et al. Diffusion characteristics of aged and virgin asphalt in reclaimed asphalt[J]. Journal of Chang'an University(Natural Science Edition), 2018, 38(5): 18-24.
[18]胡光胜,王笑风,杨 博,等.基于针入度指标的新旧沥青扩散特性研究[J].中外公路,2020,40(2):262-267.
HU Guang-sheng, WANG Xiao-feng, YANG Bo, et al. Study of dispersion characteristics of old and new asphalt based on penetration index[J]. Journal of China and Foreign Highway, 2020, 40(2): 262-267.
[19]祁文洋,李立寒,黄 毅.沥青再生剂扩散程度评价与影响因素研究[J].建筑材料学报,2014,17(6):1020-1024.
QI Wen-yang, LI Li-han, HUANG Yi. Study on the evaluation of regenerant diffusion in aged bitumen and its influencing factors[J]. Journal of Building Materials, 2014, 17(6): 1020-1024.
[20]郭 鹏,鲁承慧,谢凤章,等.微观尺度下温拌再生混合料新-旧沥青界面融合特性[J].中国公路学报,2021,34(10):89-97.
GUO Peng, LU Cheng-hui, XIE Feng-zhang, et al. Study on interfacial fusion characteristics of virgin and aged asphalt of warm mix recycled mixture at micro scale[J]. China Journal of Highway and Transport, 2021, 34(10): 89-97.
[21]HINTZ C, BAHIA H. Simplification of linear amplitude sweep test and specification parameter[J]. Transportation Research Record, 2013(2370): 10-16.
[22]HINTZ C, VELASQUEZ R, JOHNSON C, et al. Modification and validation of linear amplitude sweep test for binder fatigue specification[J]. Transportation Research Record, 2011(2207): 99-106.
[23]张 雷.沥青组分对沥青与集料粘附性影响的研究[J].北方交通,2009(1):44-46.
ZHANG Lei. Research on influence of asphalt groups on adhesiveness of asphalt to aggregate[J]. Northern Communications, 2009(1): 44-46.
[24]庞骁奕.基于AFM与表面能原理的沥青与集料粘附特性分析[D].哈尔滨:哈尔滨工业大学,2015.
PANG Xiao-yi. Asphalt and aggregate adhesion characteristics analysis based on the principle of AFM and the surface energy[J]. Harbin: Harbin Institute of Technology, 2015.
[25]LI M C, LIU L P, MENG Y F, et al. A novel gel permeation chromatography-based assessment methodology for aging condition of sbs modified asphalt in recycled asphalt pavement[J]. Construction and Building Materials, 2023, 395: 132337.
[26]ZHAO K C, WANG Y H. Improvements on the use of GPC to measure large-size microstructures in aged asphalt binders[J]. International Journal of Pavement Engineering, 2022, 23(7): 2309-2319.
[27]ZHAO S, BOWERS B, HUANG B, et al. Characterizing rheological properties of binder and blending efficiency of asphalt paving mixtures containing RAS through GPC[J]. Journal of Materials in Civil Engineering, 2014, 26(5): 941-946.
[28]谢凤章.温拌再生沥青混合料新-旧沥青界面融合程度研究[D].重庆:重庆交通大学,2022.
XIE Feng-zhang. Study on degree of interface blending of virgin asphalt and aged asphalt in warm recycled asphalt mixture[D]. Chongqing: Chongqing Jiaotong University, 2022.
[29]罗于杰.新旧沥青融合行为多尺度评价研究[D].重庆:重庆交通大学,2021.
LUO Yu-jie. Research on multi-scale evaluation of fusion behavior of new and old asphalt[D]. Chongqing: Chongqing Jiaotong University, 2021.
[30]崔冰彦.热再生沥青胶结料新旧沥青融合的分子动力学模拟[D].南京:东南大学,2020.
CUI Bing-yan. The blending mechanism of virgin and aged asphalt binders in hot recycled asphalt based on molecular dynamics simulations[D]. Nanjing: Southeast University, 2020.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):1.

备注/Memo

备注/Memo:
收稿日期:2025-02-26
基金项目:中央高校基本科研业务费专项资金项目(300102212211)
作者简介:徐金枝(1978-),女,安徽庐江人,副教授,工学博士,E-mail:jzx@chd.edu.cn。
更新日期/Last Update: 2025-09-30