[1]魏建国,邹安民,李伊梁,等.海泡石改性沥青流变与抑烟性能[J].长安大学学报(自然科学版),2025,45(5):15-29.[doi:10.19721/j.cnki.1671-8879.2025.05.002]
 WEI Jian-guo,ZOU An-min,LI Yi-liang,et al.Rheological and smoke suppression properties of sepiolite-modified asphalt[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):15-29.[doi:10.19721/j.cnki.1671-8879.2025.05.002]
点击复制

海泡石改性沥青流变与抑烟性能()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年5期
页码:
15-29
栏目:
道路工程
出版日期:
2025-09-30

文章信息/Info

Title:
Rheological and smoke suppression properties of sepiolite-modified asphalt
文章编号:
1671-8879(2025)05-0015-15
作者:
魏建国1邹安民12李伊梁1黄美燕13张凯1周育名1
(1. 长沙理工大学 交通学院,湖南 长沙 410114; 2. 北京中航空港建设工程有限公司,北京 101300; 3. 湖南城建职业技术学院 市政与路桥工程系,湖南 湘潭 411101)
Author(s):
WEI Jian-guo1 ZOU An-min12 LI Yi-liang1 HUANG Mei-yan13ZHANG Kai1 ZHOU Yu-ming1
(1. School of Transportation, Changsha University of Science and Technology, Changsha 410114, Hunan, China; 2. Beijing Sino-Aero Construction Engineering Co., Ltd., Beijing 101300, China; 3. Department of Municipal and Road and Bridge Engineering, Hunan Urban Construction College, Xiangtan 411101, Hunan, China)
关键词:
道路工程 海泡石 流变性能 抑烟性能 气相色谱-质谱联用
Keywords:
road engineering sepiolite rheological property smoke suppression property gas chromatography-mass spectrometry coupling
分类号:
U414
DOI:
10.19721/j.cnki.1671-8879.2025.05.002
文献标志码:
A
摘要:
为推动海泡石在沥青路面工程中的应用,选用东海70号基质沥青与高纯度海泡石,采用有机改性和表面改性2种方式处理海泡石,采用气体吸附法比表面积分析、动态剪切流变仪(DSR)、温度(46 ℃~82 ℃)扫描及低温(5 ℃)延度试验对比了原样、有机改性与表面改性海泡石沥青的综合性能; 基于筛选结果,通过多应力蠕变恢复(MSCR)试验、低温弯曲梁流变(BBR)试验及线性振幅扫描(LAS)测试了不同掺量(2%、4%、6%、8%)海泡石改性沥青的高温抗车辙性、低温抗裂性与疲劳寿命; 采用气相色谱-质谱(GC-MS)联用分析了海泡石改性沥青的烟气成分,结合扫描电镜(SEM)、荧光显微(FM)成像、凝胶渗透色谱(GPC)及傅里叶变换红外光谱(FTIR)揭示了其微观作用机制。研究结果表明:海泡石改性沥青的车辙因子随海泡石掺量的增加而增大,掺量为4%~6%时高温性能最佳; 掺量为4%时低温性能最优,掺量为2%~4%时可提高沥青的疲劳寿命,掺量为2%时提升效果显著; 经有机改性和表面改性后海泡石比表面积虽有所增加,但其与沥青混合后的综合性能不如原样海泡石改性沥青; 海泡石的物理增加作用能够显著改善沥青的高温性能、低温性能和疲劳性能,且不同掺量对各性能的改善程度存在差异,同时海泡石的多孔结构还具备良好的抑烟效果。综上所述,研究成果为海泡石在道路工程沥青改性领域的实际应用提供了理论支撑与实践依据。
Abstract:
To promote the application of sepiolite in asphalt pavement engineering, the Donghai-70 base asphalt and high-purity sepiolite were selected, two methods named as the organic modification and surface modification were used to treat the sepiolite, and the comprehensive properties of original, organically modified, and surface modified sepiolite asphalt were compared through the gas adsorption for specific surface area analysis, dynamic shear rheometer(DSR), temperature(46 ℃-82 ℃)sweep, and low-temperature(5 ℃)ductility test. Based on the screening results, the high-temperature rutting resistance, low-temperature crack resistance, and fatigue life of sepiolite-modified asphalts with varying contents(2%, 4%, 6%, and 8%)were evaluated through the multiple stress creep recovery(MSCR)test, low-temperature bending beam rheometer(BBR)test, and linear amplitude sweep(LAS). The smoke composition of sepiolite-modified asphalt was analyzed via the gas chromatography-mass spectrometry(GC-MS)coupling. The microscopic interaction mechanisms were elucidated by combining the scanning electron microscopy(SEM), fluorescence microscopy(FM)imaging, gel permeation chromatography(GPC)and Fourier transform infrared(FTIR)spectroscopy. The research findings indicate that the rutting factor of the sepiolite-modified asphalt increases with the rise in sepiolite content, with the optimal high-temperature performance at content of 4%-6%. The best low-temperature performance achieves at content of 4%, while the fatigue life enhances at content of 2%-4%, and a significant improvement effect is at content of 2%. Although the specific surface area of sepiolite increases after organic modification and surface modification, the overall performance of the asphalt mixed with the modified sepiolite is inferior to that of the original sepiolite-modified asphalt. The physical addition of sepiolite can significantly improve the high-temperature performance, low-temperature performance and fatigue performance of the asphalt, with varying degrees of improvement for each performance at different contents. Additionally, the porous structure of sepiolite also provides a good smoke suppression effect. In summary, the research results provide theoretical supports and practical basis for the practical application of sepiolite in the field of asphalt modification for road engineering.1 tab, 16 figs, 43 refs.

参考文献/References:

[1] CAI G J, TIAN H L, LIU L L, et al. Research progress of intelligent testing technology and evaluation methods for subgrade engineering[J]. Journal of Road Engineering, 2025, 5(2): 164-183.
[2]周波超,么宇鹏,易博卿,等.沥青路面铺筑阶段VOCs排放特征、环境和健康影响[J].公路工程,2025,50(2):103-111.
ZHOU Bo-chao, YAO Yu-peng, YI Bo-qing, et al. Characteristics, environmental and health impacts of VOCs emissions from asphalt pavement construction stage[J].Highway Engineering, 2025,50(2): 103-111.
[3]XIE J, DING Z Y, LUO H C, et al. Effectiveness of composite fume suppression and deodorizing agents in improving performance and reducing emissions of rubber modified asphalt[J]. Journal of Cleaner Production, 2024, 485: 144397.
[4]ZHOU X X, ZHANG Z Y, WANG H P, et al. Review on the properties and mechanisms of asphalt modified with bio-oil and biochar[J]. Journal of Road Engineering, 2024, 4(4): 421-432.
[5]LI S W, LIU Q T, WANG H, et al. Effect of kaolin and sepiolite on fume emissions of rubber modified asphalt[J]. Construction and Building Materials, 2024, 416: 135276.
[6]AMINI A, ZIARIB H, AMIR S A, et al. Rutting resistance, fatigue properties and temperature susceptibility of nano clay modified asphalt rubber binder[J]. Construction and Building Materials, 2021, 267: 120946.
[7]YILMAZ B, EBRU GÜRBÜZ H. Rheological and morphological evaluation of nanoclay modified asphalt binder[J]. Construction and Building Materials, 2021, 313: 125479.
[8]KE Y B, CAO J T, XU S, et al. Storage stability and anti-aging performance of SEBS/organ-montmorillonite modified asphalt[J]. Construction and Building Materials, 2022, 341: 127875.
[9]TAN Y W, XIE J G, WANG Z Q, et al. Effect of halloysite nanotubes(HNTs)and organic montmorillonite(OMMT)on the performance and mechanism of flame retardant-modified asphalt[J]. Journal of Nanoparticle Research, 2023, 25(4): 74.
[10]胡春华,张 豪.煅烧高岭土对沥青老化性能影响的试验研究[J].功能材料,2024,55(2):2022-2028.
HU Chun-hua, ZHANG Hao. Experimental study on the effect of calcined kaolin on asphalt aging performance[J]. Journal of Functional Materials, 2024, 55(2): 2022-2028.
[11]LIU Y, ZHAO J, DENG C L, et al. Flame-retardant effect of sepiolite on an intumescent flame-retardant polypropylene system[J]. Industrial and Engineering Chemistry Research, 2011, 50(4): 2047-2054.
[12]BIDSORKHI H C, ADELNIA H, NADERI N, et al. Ethylene vinyl acetate copolymer nanocomposites based on(un)modified sepiolite: Flame retardancy, thermal, and mechanical properties[J]. Polymer Composites, 2017, 38(7): 1302-1310.
[13]ZOTTI A, BORRIELLO A, RICCIARDI M, et al. Effects of sepiolite clay on degradation and fire behaviour of a bisphenol: A-based epoxy[J]. Composites: Part B: Engineering, 2015, 73: 139-148.
[14]YAN W, XIE P, YANG Z W, et al. Flame-retardant behaviors of aluminum phosphates coated sepiolite in epoxy resin[J]. Journal of Fire Sciences, 2021, 39(1): 3-18.
[15]KUANG W X, FACEY G A, DETELLIER C. Organo-mineral nanohybrids. Incorporation, coordination and structuration role of acetone molecules in the tunnels of sepiolite[J]. Journal of Materials Chemistry, 2006, 16(2): 179-185.
[16]KUANG W X, FACEY G A, DETELLIER C, et al. Nanostructured hybrid materials formed by sequestration of pyridine molecules in the tunnels of sepiolite[J]. Chemistry of Materials, 2003, 15(26): 4956-4967.
[17]孟家锋,马 原,辛振祥,等.海泡石的结构及在阻燃聚合物材料中的应用研究进展[J].合成橡胶工业,2022,45(3):253-258.
MENG Jia-feng, MA Yuan, XIN Zhen-xiang, et al. Research progress in structure of sepiolite and its application in flame retardant polymer materials[J]. China Synthetic Rubber Industry, 2022, 45(3): 253-258.
[18]张 焘,刘 勇,施式亮,等.海泡石复合材料阻燃性能研究进展[J].塑料,2023,52(1):139-145,174.
ZHANG Tao, LIU Yong, SHI Shi-liang, et al. Research progress on flame retardancy of sepiolite composite[J]. Plastics, 2023, 52(1): 139-145, 174.
[19]张红华.抑烟沥青的性能及抑烟效果评价研究[D].武汉:武汉理工大学,2014.
ZHANG Hong-hua. Study on performance and smoke suppression effect evaluation of smoke suppression asphalt[D]. Wuhan: Wuhan University of Technology, 2014.
[20]CUI P Q, WU S P, XIAO Y, et al. Experimental study on the reduction of fumes emissions in asphalt by different additives[J]. Materials Research Innovations, 2015, 19(S): S1-S158-S1-161.
[21]肖 月,常郗文,张晓珊,等.氢氧化钙沸石的设计及其对沥青VOCs的抑制[J].长安大学学报(自然科学版),2019,39(4):17-26.
XIAO Yue, CHANG Xi-wen, ZHANG Xiao-shan, et al. Design of Ca(OH)2-incorporated zeolite and its inhibition effect on bitumen VOCs[J]. Journal of Chang'an University(Natural Science Edition), 2019, 39(4): 17-26.
[22]RUIZ A I, RUIZ-GARCÍA C, RUIZ-HITZKY E. From old to new inorganic materials for advanced applications: The paradigmatic example of the sepiolite clay mineral[J]. Applied Clay Science, 2023, 235: 106874.
[23]WANG F, LIANG J S, LIU H F, et al. Preparation and performance of inorganic heat insulation panel based on sepiolite nanofibers[J]. Journal of Nanomaterials, 2014, 2014(1): 876967.
[24]HEI S Q, XU H, LIU B M, et al. Enhanced pre-treatment of sepiolite on coal gasification wastewater: Performance and adsorption mechanism[J]. Journal of Hazardous Materials, 2022, 440: 129842.
[25]梁 凯,彭美勋,赵宏伟.湘潭海泡石甲醛吸附性能及其热再生研究[J].非金属矿,2022,45(1):74-77.
LIANG Kai, PENG Mei-xun, ZHAO Hong-wei. Study on HCHO adsorption performances of Xiangtan sepiolite and its thermal regeneration[J]. Non-Metallic Mines, 2022, 45(1): 74-77.
[26]任一言,杨贵才,杨思侠,等.改性海泡石涂布纸的制备及其对甲醛的吸附性能[J].包装工程,2024,45(11):34-43.
REN Yi-yan, YANG Gui-cai, YANG Si-xia, et al. Preparation of modified sepiolite coated paper and its adsorption performance for formaldehyde[J]. Packaging Engineering, 2024, 45(11): 34-43.
[27]王 梓,林凤采,熊明诚,等.纤维素基有机-无机杂化复合膜的制备及其吸附性能[J].化工进展,2019,38(9):4204-4211.
WANG Zi, LIN Feng-cai, XIONG Ming-cheng, et al. Preparation and adsorption performance of cellulose-based organic-inorganic hybrid composite membrane[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4204-4211.
[28]李思盈,周 超.海泡石纤维增强二氧化硅气凝胶的制备及性能[J].材料导报,2024,38(19):26-34.
LI Si-ying, ZHOU Chao. Preparation and properties of sepiolite fiber enhanced silica aerogel[J]. Materials Reports, 2024, 38(19): 26-34.
[29]贾 堤,武梦笔,林文桐.海泡石用作建筑涂料增稠流变剂的研究[J].新型建筑材料,2003,30(3):30-32.
JIA Di, WU Meng-bi, LIN Wen-tong. Study on sepiolite as thickening rheological agent for architectural coatings[J]. New Building Materials, 2003, 30(3): 30-32.
[30]CHANG X W, WANG F, WU R, et al. Towards green asphalt materials with lower emission of volatile organic compounds: A review on the release characteristics and its emission reduction additives[J]. Journal of Road Engineering, 2024, 4(3): 292-317.
[31]孙剑锋,张 红,梁金生,等.生态环境功能材料领域的研究进展及学科发展展望[J].材料导报,2021,35(13):13075-13084.
SUN Jian-feng, ZHANG Hong, LIANG Jin-sheng, et al. Research & development of the field of ecological environment functional material and its discipline prospect[J]. Materials Reports, 2021, 35(13): 13075-13084.
[32]艾长发,易虹宇,寇吟松,等.不同嵌段共聚物对改性沥青微观形态及高温性能影响[J].长安大学学报(自然科学版),2024,44(1):13-23.
AI Chang-fa, YI Hong-yu, KOU Yin-song, et al. Effects of different styrenic triblock copolymers on micromorphology and high temperature performance of modified asphalt[J]. Journal of Chang'an University(Natural Science Edition), 2024, 44(1): 13-23.
[33]冯新军,傅 豪,段湖杰.萃取法生物油基再生沥青性能及再生机理[J].长安大学学报(自然科学版),2024,44(2):12-21.
FENG Xin-jun, FU Hao, DUAN Hu-jie. Performance and regeneration mechanism of bio-oil-based recycled asphalt by extraction method[J]. Journal of Chang'an University(Natural Science Edition), 2024, 44(2): 12-21.
[34]杜银飞,徐君全,王志杰,等.纤维增强高模量沥青混合料的路用性能表征与机理研究[J].中南大学学报(自然科学版),2024,55(10):3898-3908.
DU Yin-fei, XU Jun-quan, WANG Zhi-jie, et al. Characterization and mechanism of road performance of fiber-reinforced high modulus asphalt mixture[J]. Journal of Central South University(Science and Technology), 2024, 55(10): 3898-3908.
[35]谭忆秋,符永康,纪 伦,等.橡胶沥青低温评价指标[J].哈尔滨工业大学学报,2016,48(3):66-70.
TAN Yi-qiu, FU Yong-kang, JI Lun, et al. Low-temperature evaluation index of rubber asphalt[J]. Journal of Harbin Institute of Technology, 2016, 48(3): 66-70.
[36]许新权,唐胜刚,杨 军.粉胶比对沥青胶浆高低温性能的影响[J].长安大学学报(自然科学版),2020,40(4):14-26.
XU Xin-quan, TANG Sheng-gang, YANG Jun. Influence of filler-asphalt ratio on high- and low-temperature performance of asphalt mortar[J]. Journal of Chang'an University(Natural Science Edition, 2020, 40(4): 14-26.
[37]王朝辉,邵 捷,宋 亮,等.SBS/胶粉复合改性新疆沥青制备及性能评价[J].长安大学学报(自然科学版),2023,43(2):1-15.
WANG Chao-hui, SHAO Jie, SONG Liang, et al. Preparation and performance evaluation of SBS/CR modified Xinjiang asphalt[J]. Journal of Chang'an University(Natural Science Edition), 2023, 43(2): 1-15.
[38]WANG C H, ZHANG T H, LI A Q, et al. State of the art review on inorganic powders modified asphalt materials: Reducing the temperature of asphalt pavement[J]. Journal of Road Engineering, 2025, 5(2): 279-296.
[39]HUANG M Y, WEI J G, LI P, et al. Evolution of rheological properties and prediction of mastic viscoelastic behavior of warm mix asphalt[J]. Fuel, 2026, 404: 136080.
[40]周育名,张 凯,郭云龙,等.PPA复合改性对沥青-集料黏附及其水稳定性影响研究[J].中国公路学报,2024,37(6):317-330.
ZHOU Yu-ming, ZHANG Kai, GUO Yun-long, et al. Effect of PPA composite modification on asphalt-aggregate adhesion and water stability[J]. China Journal of Highway and Transport, 2024, 37(6): 317-330.
[41]张含宇,徐 刚,陈先华,等.不同试验方法的老化沥青疲劳性能研究[J].建筑材料学报,2020,23(1):168-175.
ZHANG Han-yu, XU Gang, CHEN Xian-hua, et al. Fatigue property of aged asphalt binders using different experimental methods[J]. Journal of Building Materials, 2020, 23(1): 168-175.
[42]梁 波,廖 威,郑健龙.改性剂与沥青相容性作用中分子动力学模拟综述[J].交通运输工程学报,2024,24(5):54-85.
LIANG Bo, LIAO Wei, ZHENG Jian-long. Review on molecular dynamics simulation for compatibilities of modifiers with asphalt[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 54-85.
[43]BHAMBHANI B, CHANDRA S, BHARATH G. A novel approach for analyzing linear amplitude sweep(LAS)test data of asphalt binders[J]. Construction and Building Materials, 2024, 449: 138431.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):1.

备注/Memo

备注/Memo:
收稿日期:2025-03-05
基金项目:湖南省教育厅科学研究项目(24A0246); 广西科技计划项目(桂科AA23062054)
作者简介:魏建国(1972-),男,河南信阳人,教授,博士研究生导师,E-mail:jianguowei9969@126.com。
通信作者:周育名(1985-),女,山东威海人,副教授,工学博士,E-mail:zym_2015@csyst.edu.cn。
更新日期/Last Update: 2025-09-30