[1]张洪亮,王晓锋,吕文江,等.基于行车振动加速度的路桥过渡段差异沉降理论反算方法[J].长安大学学报(自然科学版),2025,45(5):1-14.[doi:10.19721/j.cnki.1671-8879.2025.05.001]
 ZHANG Hong-liang,WANG Xiao-feng,LYU Wen-jiang,et al.Theoretical back-calculation method for differential settlement of bridge-subgrade transition section based on vehicle vibration acceleration[J].Journal of Chang’an University (Natural Science Edition),2025,45(5):1-14.[doi:10.19721/j.cnki.1671-8879.2025.05.001]
点击复制

基于行车振动加速度的路桥过渡段差异沉降理论反算方法()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年5期
页码:
1-14
栏目:
道路工程
出版日期:
2025-09-30

文章信息/Info

Title:
Theoretical back-calculation method for differential settlement of bridge-subgrade transition section based on vehicle vibration acceleration
文章编号:
1671-8879(2025)05-0001-14
作者:
张洪亮1王晓锋1吕文江2汤祖杰3
(1. 长安大学 公路学院,陕西 西安 710064; 2. 陕西交通控股集团有限公司,陕西 西安 710075; 3. 福建省交通建设质量安全中心,福建 福州 350001)
Author(s):
ZHANG Hong-liang1 WANG Xiao-feng1 LYU Wen-jiang2 TANG Zu-jie3
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Shaanxi Transportation Holding Group Co., Ltd., Xi'an 710075, Shaanxi, China; 3. Transportation Construction Quality and Safety Center of Fujian Province, Fuzhou 350001, Fujian, China)
关键词:
道路工程 桥头跳车 振动加速度 差异沉降 拉普拉斯变换
Keywords:
road engineering vehicle bump at bridgehead vibration acceleration differential settlement Laplace transform
分类号:
U416.1
DOI:
10.19721/j.cnki.1671-8879.2025.05.001
文献标志码:
A
摘要:
为满足路桥过渡段差异沉降快速检测需求,基于行车振动加速度提出了一种理论反算方法,构建了1/4车辆模型,分别为设与不设搭板的路桥过渡段建立了台阶状和折线状模型; 根据牛顿第二定律推导出车辆经过路桥过渡段时的受迫振动方程,并通过拉普拉斯变换将其转化为齐次方程进行求解,从而在频域内建立了行车振动加速度与路桥过渡段差异沉降的理论关系式; 考虑车辆行驶方向对振动响应的影响,将车辆经过路桥过渡段分为上桥和下桥2种工况,分别建立了车辆通过设与不设搭板的路桥过渡段时的初始条件和路面位移; 进行了车辆跌落试验,基于模态参数理论构建了车辆模态参数与物理参数的关联体系,进而运用遗传算法确定了车辆的物理参数; 在此基础上,建立了基于行车振动加速度的路桥过渡段差异沉降理论反算方法,并对其进行了实地校验。研究结果表明:利用行车振动加速度理论反算出的路桥过渡段差异沉降与实测值的误差小于0.25 cm,最小误差率为6.00%,最大误差率为13.16%,平均误差率为8.89%,因此,相对误差率小于14%; 误差主要来源于车辆轮胎接触面积较大时的动态过程简化、台阶前路面不平整的叠加激励和车辆参数识别精度; 提出的方法对设与不设搭板的路桥过渡段均适用,仅车辆经过桥头时所受到的路面激励不同,可用于检测路桥过渡段差异沉降。
Abstract:
To meet the requirement for rapid detection of differential settlement of bridge-subgrade transition section, a theoretical back-calculation method was proposed based on vehicle vibration acceleration. A quarter-vehicle model was constructed, a step-like model and a broken-line model were established for bridge-subgrade transition sections with and without approach slab, respectively. According to Newton's second law, the forced vibration equation of a vehicle passing through the bridge-subgrade transition section was derived, and the Laplace transform was used to transfer the equation into a homogeneous equation for solving. Thus, a theoretical relationship between vehicle vibration acceleration and differential settlement of bridge-subgrade transition section was established in frequency domain. Considering the influence of vehicle driving direction on vibration responses, the vehicle passing through the bridge-subgrade transition section was divided into entry onto the bridge and egress from the bridge. The initial conditions and pavement displacements when the vehicle passing through the bridge-subgrade transition sections with and without approach slab were established, respectively. Vehicle drop tests were conducted to develop a correlative framework between modal parameters and physical parameters of the vehicle based on the modal parameter theory. Furthermore, the genetic algorithm was used to determine the physical parameters of the vehicle. On this basis, a theoretical back-calculation method for differential settlement of the bridge-subgrade transition section based on vehicle vibration acceleration was established and field-verified. The research results show that the error between the theoretically back-calculated differential settlement of the bridge-subgrade transition section using the vehicle vibration acceleration and the measured value is less than 0.25 cm. The minimum error rate is 6.00%, the maximum error rate is 13.16%, and the average error rate is 8.89%. So the relative error rate is less than 14%. The error primarily stems from the simplification in dynamic process when the vehicle tire contact areas are large, the superimposed excitation from uneven pavement before the step, and the vehicle parameter identification accuracy. The proposed method is applicable to bridge-subgrade transition sections both with and without approach slab, with the only difference being the road excitation imposed on the vehicle when passing through the bridgehead. It can be used to detect the differential settlement of the bridge-subgrade transition section.4 tabs, 9 figs, 30 refs.

参考文献/References:

[1] 《中国公路学报》编辑部.中国桥梁工程学术研究综述·2024[J].中国公路学报,2024,37(12):1-160.
Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2024[J]. China Journal of Highway and Transport, 2024, 37(12): 1-160.
[2]DU Y, HE X J, WU C, et al. Long-term monitoring and analysis of the longitudinal differential settlement of an expressway bridge-subgrade transition section in a loess area[J]. Scientific Reports, 2022, 12(1): 19327.
[3]LIU H, HAN J, JAWAD S, et al. Literature review of causes and mitigation techniques for bumps at ends of bridges[C]//ASCE. Geo-Congress 2020. Reston: ASCE, 2020: 862-871.
[4]马加存,赵全满,张明虎,等.高速公路改扩建中路桥过渡段差异沉降控制方法及标准研究[J].公路,2021,66(10):76-83.
MA Jia-cun, ZHAO Quan-man, ZHANG Ming-hu, et al. Control methods and standards of differential settlement between bridge abutment and approach embankment in expressway reconstruction and extension[J]. Highway, 2020, 66(10): 76-83.
[5]LANG H, PENG Y, ZOU Z, et al. Automated bridgehead settlement detection on the non-staggered-step structures based on settlement point ratio model[J].Applied Sciences, 2023, 13(13): 7888.
[6]OLASZEK P, WYCZALEK I, SALA D M, et al. Monitoring of the static and dynamic displacements of railway bridges with the use of inertial sensors[J]. Sensors, 2020, 20(10): 2767.
[7]SHEN N, WANG B, MA H Y, et al. A review of terrestrial laser scanning(TLS)-based technologies for deformation monitoring in engineering[J]. Measurement, 2023, 223: 113684.
[8]SON H, BOSCHÉ F, KIM C. As-built data acquisition and its use in production monitoring and automated layout of civil infrastructure: a survey[J]. Advanced Engineering Informatics, 2015, 29(2): 172-183.
[9]JÁUREGUI D V, WHITE K R, WOODWARD C B, et al. Noncontact photogrammetric measurement of vertical bridge deflection[J]. Journal of Bridge Engineering, 2003, 8(4): 212-222.
[10]杜 昭,张文榕,朱兴一.基于网联车辆数据融合的路面平整度评估方法[J].中国公路学报,2024,37(6):302-316.
DU Zhao, ZHANG Wen-rong, ZHU Xing-yi. Road roughness assessment based on fusion of connected-vehicles data[J]. China Journal of Highway and Transport, 2024, 37(6): 302-316.
[11]曾靖翔,张金喜,曹丹丹,等.利用kNN方法的沥青路面平整度智能检测[J].华南理工大学学报(自然科学版),2022,50(3):50-56.
ZENG Jing-xiang, ZHANG Jin-xi, CAO Dan-dan, et al. Intelligent detection of asphalt pavement roughness with kNN method[J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(3): 50-56.
[12]XIN H Y, YE Y, NA X X, et al. Sustainable road pothole detection: A crowdsourcing based multi-sensors fusion approach[J]. Sustainability, 2023, 15(8): 6610.
[13]YIN Y F, FU W L, MA X Y, et al. Road surface pits and speed bumps recognition based on acceleration sensor[J]. IEEE Sensors Journal, 2024, 24(7): 10669-10679.
[14]DU R H, QIU G, GAO K, et al. Abnormal road surface recognition based on smartphone acceleration sensor[J]. Sensors, 2020, 20(2): 451.
[15]SABIR N, ALI MEMON A, SHAIKH F K. Threshold based efficient road monitoring system using crowdsourcing approach[J]. Wireless Personal Communications, 2019, 106(4): 2407-2425.
[16]陈广华,张金喜,曹丹丹,等.智能手机检测的行车振动数据与路面平整度关系[J].北京工业大学学报,2021,47(10):1148-1157.
CHEN Guang-hua, ZHANG Jin-xi, CAO Dan-dan, et al. Relationship between pavement roughness and vibration data measured by smart phone[J]. Journal of Beijing University of Technology, 2021, 47(10): 1148-1157.
[17]张金喜,平馨颖,郭旺达,等.基于不同智能设备的路面平整度预测精度及其比较[J].华南理工大学学报(自然科学版),2025,53(6):140-150.
ZHANG Jin-xi, PING Xin-ying, GUO Wang-da, et al. Prediction accuracy and its comparison of road surface roughness based on different intelligent devices[J]. Journal of South China University of Technology(Natural Science Edition), 2025, 53(6): 140-150.
[18]ZHANG Z, ZHANG H L, XU S, et al. Pavement roughness evaluation method based on the theoretical relationship between acceleration measured by smartphone and IRI[J]. International Journal of Pavement Engineering, 2022, 23(9): 3082-3098.
[19]SINGH G, BANSAL D, SOFAT S, et al. Smart patrolling: An efficient road surface monitoring using smartphone sensors and crowdsourcing[J]. Pervasive and Mobile Computing, 2017, 40: 71-88.
[20]CABRAL F S, PINTO M, MOUZINHO F A L N, et al. An automatic survey system for paved and unpaved road classification and road anomaly detection using smartphone sensor[C]//IEEE. 2018 IEEE International Conference on Service Operations and Logistics, and Informatics(SOLI). New York: IEEE, 2018: 65-70.
[21]YANG D S, WANG C M. Modal properties identification of damped bridge using improved vehicle scanning method[J]. Engineering Structures, 2022, 256: 114060.
[22]CHIN C H, ABDULLAH S, ARIFFIN A K, et al. A review of the wavelet transform for durability and structural health monitoring in automotive applications[J]. Alexandria Engineering Journal, 2024, 99: 204-216.
[23]WU C, WANG Z, HU S, et al. An automated machine-learning approach for road pothole detection using smartphone sensor data[J]. Sensors, 2020, 20(19): 5564.
[24]HROVAT D. Optimal active suspension structures for quarter-car vehicle models[J]. Automatica, 1990, 26(5): 845-860.
[25]SATTASO S, NONLAOPON K, KIM H. Further properties of Laplace-typed integral transforms[J]. Dynamic Systems and Applications, 2019, 28(1): 195-215.
[26]DINGFELDER B, WEIDEMAN J A C. An improved Talbot method for numerical Laplace transform inversion[J]. Numerical Algorithms, 2015, 68(1): 167-183.
[27]YOSRI A, ELLEATHY Y, HASSINI S, et al. Genetic algorithm—Markovian model for predictive bridge asset management[J]. Journal of Bridge Engineering, 2021, 26(8): 04021052.
[28]SU Man M, LIU J F, LU J Z, et al. Study on the vibration evaluation method and allowable differential settlement of road-bridge transition section with full-car model[J]. International Journal of Pavement Engineering, 2023, 24(1): 2090557.
[29]MA P, DING F, ZHU Q M. Decomposition-based recursive least squares identification methods for multivariate pseudo-linear systems using the multi-innovation[J]. International Journal of Systems Science, 2018, 49(5): 920-928.
[30]DONG G M, CHEN J, ZHANG N. Investigation into on-road vehicle parameter identification based on subspace methods[J]. Journal of Sound and Vibration, 2014, 333(24): 6760-6779.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):1.

备注/Memo

备注/Memo:
收稿日期:2025-03-20
基金项目:国家自然科学基金项目(51978075); 陕西省交通运输科研项目(23-67K); 福建省交通运输科技项目(202305)
作者简介:张洪亮(1974-),男,山东枣庄人,教授,博士研究生导师,E-mail:zhliang0105@163.com。
更新日期/Last Update: 2025-09-30