[1]董志强,崔础石,孙 瑜,等.基于自预应力Fe-SMA的工程结构智慧修复平台开发设计与验证[J].长安大学学报(自然科学版),2025,45(4):141-152.[doi:10.19721/j.cnki.1671-8879.2025.04.012]
 DONG Zhi-qiang,CUI Chu-shi,SUN Yu,et al.Development, design and verification of an intelligent repair platform for engineering structures based on self-prestressing Fe-SMA[J].Journal of Chang’an University (Natural Science Edition),2025,45(4):141-152.[doi:10.19721/j.cnki.1671-8879.2025.04.012]
点击复制

基于自预应力Fe-SMA的工程结构智慧修复平台开发设计与验证()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年4期
页码:
141-152
栏目:
桥梁与隧道工程
出版日期:
2025-07-30

文章信息/Info

Title:
Development, design and verification of an intelligent repair platform for engineering structures based on self-prestressing Fe-SMA
文章编号:
1671-8879(2025)04-0141-12
作者:
董志强崔础石孙 瑜朱 虹吴 刚李儒雅
(东南大学 土木工程学院,江苏 南京 211189)
Author(s):
DONG Zhi-qiang CUI Chu-shi SUN Yu ZHU Hong WU Gang LI Ru-ya
(School of Civil Engineering, Southeast University, Nanjing 211189, Jiangsu, China)
关键词:
桥梁工程 智慧修复平台 自预应力修复 Fe-SMA 升温激励
Keywords:
bridge engineering intelligent repair platform self-prestressing repair Fe-SMA thermal activation
分类号:
TU502.6
DOI:
10.19721/j.cnki.1671-8879.2025.04.012
文献标志码:
A
摘要:
针对土木工程领域长期存在的结构健康监测/评估技术与作业修复技术脱节、修复响应滞后问题,构建基于铁基形状记忆合金(Fe-SMA)自预应力技术的工程结构智慧修复平台框架。该平台以Fe-SMA为核心功能材料,通过高温激励产生的回复应力实现损伤结构主动修复; 平台集成监测/检测模块、模型计算模块和作业修复模块,依托数据传输与功能调用实现模块协同,实现结构前端监测、中段评估与末端修复的全过程智慧化。为验证平台有效性,以有机玻璃模型梁桥为对象,设计“跨中集中加载诱发病害、后端模块评估计算、Fe-SMA筋激励修复”的验证试验,并针对智慧修复平台提出一系列优化建议。研究结果表明:智慧修复平台可实时监测模型梁状态; 损伤达到阈值后自动触发评估计算,反演出恢复结构健康所需施加的预应力值及Fe-SMA筋激励参数等; 基于Fe-SMA自预应力的主动修复能使结构恢复健康状态,并详细展示平台在相应工况下的响应界面。
Abstract:
To address the persistent disconnection between structural health monitoring/evaluation technologies and repair execution technologies in civil engineering, along with the issue of delayed repair response, an intelligent repair platform for engineering structures based on self-prestressing iron-based shape memory alloy(Fe-SMA)was developed. Within this platform, Fe-SMA served as the core functional material, enabling active repair of damaged structures via recovery stress induced through thermal activation. The platform integrated three modules: monitoring/detection module, a model calculation module, and an operation/repair module. Module collaboration was realized through data transmission and functional invocation, achieving intelligent automation across the entire process encompassing front-end monitoring, mid-process assessment, and terminal repair. To validate the effectiveness of the platform, a verification experiment was conducted using a plexiglass model beam bridge. The experiment was designed with a three-phase procedure: inducing damage via mid-span concentrated loading, computational assessment by the model calculation module, and repair execution through Fe-SMA rebar activation. A series of optimization suggestions for the intelligent repair platform were also proposed. The research results indicate that the intelligent repair platform can monitor the state of the model beam in real-time; upon the damage reaching a threshold, the assessment calculation is automatically triggered, inversely computing the prestress value required to restore structural health and the Fe-SMA activation parameters; active repair based on Fe-SMA self-prestressing enables the structure to recover to a healthy state; the response interfaces of the platform under the corresponding working conditions are detailedly presented. 1 tab, 9 figs, 41 refs.

参考文献/References:

[1] 汤东婴,魏晓斌,孙正华,等.结构健康监测系统综述研究[J].智能建筑与智慧城市,2023(8):6-11.
TANG Dong-ying, WEI Xiao-bin, SUN Zheng-hua, et al. Research on structural health monitoringsystem[J]. Intelligent Building & Smart City, 2023(8): 6-11.
[2]孙树立,韩旭东,陈 璞.建筑结构安全分析方法与评估技术综述[J].中国安全科学学报,2022,32(9):37-48.
SUN Shu-li, HAN Xu-dong, CHEN Pu. Review on safety analysis methods and evaluation techniques ofbuilding structures[J]. China Safety Science Journal, 2022, 32(9): 37-48.
[3]袁 波,田 原.混凝土结构加固修复业技术现状与发展对策[J].建筑技术开发,2020,47(23):137-139.
YUAN Bo, TIAN Yuan. Technology status and development countermeasures of concrete structurereinforcement and repair industry[J]. Building Technique Development, 2020, 47(23): 137-139.
[4]朱春华,梁建明,余秀萍.形状记忆合金材料的发展及应用[J].河北建筑工程学院学报,2003,21(2):13-14.
ZHU Chun-hua, LIANG Jian-ming, Yu Xiu-ping. Development and application of shape memory alloymaterials[J]. Journal of Hebei Institute of Architecture and Civil Engineering, 2003, 21(2): 13-14.
[5]王 慧,刘丽霞,康茹雪.形状记忆合金在生物医学领域的应用[J].中国医疗器械信息,2023,29(17):77-79.
WANG Hui, LIU Li-xia, KANG Ru-xue. Application of shape memory alloy in biomedical field[J]. China Medical Device Information, 2023, 29(17): 77-79.
[6]LI H, MAO C, LIU Z, et al. Shape memory alloy-based smart civil structures with self-sensing and repairingcapabilities[C]//FARHAD A. Sensing Issues in Civil Structural Health Monitoring. Berlin: Springer, 2005: 259-268.
[7]匡亚川,欧进萍.具有损伤自修复功能的智能混凝土梁[J].功能材料,2007,38(11):1866-1870.
KUANG Ya-chuan, OU Jin-ping. Smart concrete beams with damage self-repairing capacity[J]. Journal ofFunctional Materials, 2007, 38(11): 1866-1870.
[8]欧进萍,匡亚川.形状记忆合金增强弹性混凝土梁的变形特征[J].建筑科学与工程学报,2007,24(3):1-6.
OU Jin-ping, KUANG Ya-chuan. Deformation characteristic of concrete beams embedded superplasticshape memory alloy[J]. Journal of Architecture and Civil Engineering, 2007, 24(3): 1-6.
[9]匡亚川,欧进萍.形状记忆合金智能混凝土梁变形特性的研究[J].中国铁道科学,2008,29(4):41-46.
KUANG Ya-chuan, OU Jin-ping. Research on the deformation characteristics of smart concrete beamembedded with shape memory alloy wires[J]. China Railway Science, 2008, 29(4): 41-46.
[10]KUANG Y C, OU J P. Self-repairing performance of concrete beams strengthened using superplastic SMAwires in combination with adhesives released from hollow fibers[J]. Smart Materials & Structures, 2008, 17(2): 25020-25027.
[11]OTSUKA K, Ren X. Recent developments in the research of shape memory alloys[J]. Intermetallics, 1999, 7(5): 511-528.
[12]WAYMAN C M. Some applications of shape-memory alloys[J]. The Journal of The Minerals, Metals & Materials Society, 1980, 32: 129-137.
[13]TIWARI N P, GOGOI A, HAZRA B, et al. A shape memory alloy-tuned mass damper inerter system for passive control of linked-SDOF structural systems under seismic excitation[J]. Journal of Sound andVibration, 2021, 494(1): 115893.
[14]OLIVEIRA J P, MIRANDA R M, FERNANDES F M B. Welding and joining of NiTi shape memory alloys: A review[J]. Progress in Materials Science, 2017, 88: 412-466.
[15]袁志山,吴艳华,周 瑾,等.钛镍形状记忆合金丝材力学性能研究[J].热加工工艺,2014,43(14):183-186,190.
YUAN Zhi-shan, WU Yan-hua, ZHOU Jin, et al. Study on mechanical properties of nickel-titanium shape memory alloy wires[J]. Hot Working Technology, 2014, 43(14): 183-186, 190.
[16]马成武.桥梁健康监测传感器优化布置及损伤识别方法研究[D].兰州:兰州交通大学,2024.
MA Cheng-wu. Research on optimal placement of bridge health monitoring sensors and damageidentification method[D]. Lanzhou: Lanzhou Jiaotong University, 2024.
[17]唐于凌.基于深度学习的桥梁结构损伤识别与可视化损伤定位方法研究[D].重庆:重庆交通大学,2024.
TANG Yu-ling. Research on deep learning based structure damage detection and visual damage location[D]. Chongqing: Chongqing Jiaotong University, 2024.
[18]张 明.基于计算机视觉的震后RC结构安全评估方法的研究[D].哈尔滨:哈尔滨工业大学,2021.
ZHANG Ming. Research on safety assessment method of post-earthquake RC structures based on computervision[D]. Harbin: Harbin Institute of Technology, 2021.
[19]雷珍珍,梁清清.在役桥梁健康监测与状况评估系统设计与应用[J].中国水运,2023(6):140-142.
LEI Zhen-zhen, LIANG Qing-qing. Design and application of health monitoring and condition assessmentsystem for bridges in service[J]. China Water Transport, 2023(6): 140-142.
[20]ZHENG Y C, DONG Z Q, LIU Z Q, et al. An activation guideline for the resistive heating process ofiron-based shape memory alloy embedded in concrete[J]. Structures, 2024, 68: 107079.
[21]JI J H, HAN T H, DONG Z Q, et al. Performance of concrete columns actively strengthened with hoopconfinement: A state-of-the-art review[J]. Structures, 2023, 54: 461-477.
[22]金学军,金明江,耿永红.铁基形状记忆合金马氏体相变研究进展[J].中国材料进展,2011,30(9):32-41,56.
JIN Xue-jun, JIN Ming-jiang, GENG Yong-hong. Recent developments of martensitic transformation inferrous shape memory alloys[J]. Materials China, 2011, 30(9): 32-41, 56.
[23]DONG Z Q, LIU Z Q, JI J H, et al. Characterization of self-prestressing iron-based shape memory alloy barsfor new structures[J]. Construction and Building Materials, 2023, 371: 130795.
[24]朱 虹,刘子卿,董志强,等.基于铁基形状记忆合金的新型预应力技术及其工程应用[J].东南大学学报(自然科学版),2022,52(2):402-416.
ZHU Hong, LIU Zi-qing, DONG Zhi-qiang, et al. New prestressing technology based on iron-based shapememory alloys and its application in engineering[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(2): 402-416.
[25]蔺明宇.铁基SMA混凝土剪力墙可恢复变形性能研究[D].沈阳:沈阳建筑大学,2019.
LIN Ming-yu. Research on deformation recoverability of Fe-based SMA-reinforced concrete shear walls[D].Shenyang: Shenyang Jianzhu University, 2019.
[26]任 彦.铁基形状记忆合金研究与应用的新进展[J].新材料产业,2014(6):42-45.
REN Yan. New progress in research and application of iron-based shape memory alloys[J]. AdvancedMaterials Industry, 2014(6): 42-45.
[27]杨 昕.NiTi形状记忆合金片材及绞线的疲劳行为研究[D].深圳:深圳大学,2021.
YANG Xin. Experimental study on fatigue behavior of NiTi shape memory alloy sheets and strandedwires[D]. Shenzhen: Shenzhen University, 2021.
[28]CLADERA A, WEBER B, LEINENBACH C, et al. Iron-based shape memory alloys for civil engineeringstructures: An overview[J]. Construction and Building Materials, 2014, 63: 281-293.
[29]QIANG X H, WU Y P, WANG Y H, et al. Research progress and applications of Fe-Mn-Si-based shapememory alloys on reinforcing steel and concrete bridges[J]. Applied Sciences, 2023, 13(6): 3404.
[30]沈 阳,朱 立,丁 雪.高速公路收费站智能运维监测系统的设计与实现[J].中国交通信息化,2022(3):112-114,123.
SHEN Yang, ZHU Li, DING Xue. Design and implementation of intelligent operation and maintenance monitoring system for expressway toll stations[J]. China ITS Journal, 2022(3): 112-114, 123.
[31]ALKHAIRO A, OUKAILI N, AL-MAHAIDI R. Flexural improvement of reinforced concrete beamsstrengthened with self-prestressing shape memory alloys[J]. Advances in Structural Engineering, 2024, 27(2): 195-214.
[32]KHALIL A, ELKAFRAWY M, ABUZAID W, et al. Flexural performance of RC beams strengthened withpre-stressed iron-based shape memory alloy(Fe-SMA)bars: Numerical study[J]. Buildings, 2022, 12(12): 2228.
[33]JI J H, DONG Z Q, LIU Z Q, et al. Feasibility of using Fe-SMA rebar as cracking resistance spiral stirrup inthe anchorage zone of post-tensioned prestressed concrete[J]. Structures, 2023, 48: 823-838.
[34]张文娣.基于ABAQUS的混凝土梁优化程序的设计与实现[D].大连:大连理工大学,2016.
ZHANG Wen-ti. Design and implementation of concrete beam optimization software based onABAQUS[D]. Dalian: Dalian University of Technology, 2016.
[35]HONG K, LEE S, YEON Y, et al. Flexural response of reinforced concrete beams strengthened withnear-surface-mounted Fe-based shape-memory alloy strips[J]. International Journal of Concrete Structuresand Materials, 2018, 12: 1-13.
[36]ROJOB H, EL-HACHA R. Self-prestressing using iron-based shape memory alloy for flexural strengtheningof reinforced concrete beams[J]. ACI Structural Journal, 2017, 114(2): 523-532.
[37]杨东辉,孙家正,伊廷华,等.可考虑温致位移时滞的大跨桥梁支座劣化预警技术[J].东南大学学报(自然科学版),2024,54(2):268-274.
YANG Dong-hui, SUN Jia-zheng, YI Ting-hua, et al. Early warning technology of long-span bridge bearingdeterioration considering time lag effects of thermal-induced displacement[J]. Journal of SoutheastUniversity(Natural Science Edition), 2024, 54(2): 268-274.
[38]WU T S, CHEN S Y, WU P. Intelligent fault diagnosis system based on big data[J]. The Journal ofEngineering, 2019, 2019(23): 8980-8985.
[39]周荣环,康 帅,王自法,等.基于时频分析与深度学习的结构震后损伤评估[J].地震工程学报,2024,46(1):115-125.
ZHOU Rong-huan, KANG Shuai, WANG Zi-fa, et al. Structural damage assessment after earthquakes usingtime-frequency analysis and deep learning[J]. China Earthquake Engineering Journal, 2024, 46(1): 115-125.
[40]成佳明,靳 慧,郑子健,等.基于机器视觉的施工现场钢结构焊缝坡口识别[J].东南大学学报(自然科学版),2023,53(1):86-93.
CHENG Jia-ming, JIN Hui, ZHENG Zi-jian, et al. Welding seam groove recognition of steel structure onconstruction site based on machine vision[J]. Journal of Southeast University(Natural Science Edition), 2023,53(1): 86-93.
[41]SPENCER B F, HOSKERE V, NARAZAKI Y. Advances in computer vision-based civil infrastructureinspection and monitoring[J]. Engineering, 2019, 5(2): 199-222.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):44.

备注/Memo

备注/Memo:
收稿日期:2025-01-23
基金项目:江苏省优秀青年基金项目(BK20230088); 国家自然科学基金项目(52378139,52478307)
作者简介:董志强(1990-),男,安徽芜湖人,副教授,工学博士,E-mail:zhiqiang.dong@seu.edu.cn。
通信作者:朱 虹(1975-),女,江苏兴化人,教授,工学博士,E-mail:alice_zhuhong@seu.edu.cn。
更新日期/Last Update: 2025-07-25