[1]王力东,李子强,沈永杰,等.双幅Π形梁斜拉桥涡振性能气动优化试验及机理[J].长安大学学报(自然科学版),2025,45(4):129-140.[doi:10.19721/j.cnki.1671-8879.2025.04.011]
 WANG Li-dong,LI Zi-qiang,SHEN Yong-jie,et al.Aerodynamic optimization test and mechanism of vortex-induced vibration properties for two parallel Π-shaped girder cable-stayed bridge[J].Journal of Chang’an University (Natural Science Edition),2025,45(4):129-140.[doi:10.19721/j.cnki.1671-8879.2025.04.011]
点击复制

双幅Π形梁斜拉桥涡振性能气动优化试验及机理()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年4期
页码:
129-140
栏目:
桥梁与隧道工程
出版日期:
2025-07-30

文章信息/Info

Title:
Aerodynamic optimization test and mechanism of vortex-induced vibration properties for two parallel Π-shaped girder cable-stayed bridge
文章编号:
1671-8879(2025)04-0129-12
作者:
王力东12李子强1沈永杰1胡 朋12王 雷3
(1. 长沙理工大学 土木与环境工程学院,湖南 长沙 410114; 2. 桥梁工程安全控制教育部重点实验室长沙理工大学,湖南 长沙 410114; 3. 广东省交通规划设计研究院集团股份有限公司,广东 广州 510507)
Author(s):
WANG Li-dong12 LI Zi-qiang1 SHEN Yong-jie1 HU Peng12 WANG Lei3
(1. School of Civil and Environmental Engineering, Changsha University of Science and Technology,Changsha 410114, Hunan, China; 2. Key Laboratory of Safety Control of Bridge Engineering of Ministry of Education, Changsha University of Science and Technology, Changsha 410114, Hunan, China; 3. Guangdong Communication Planning and Design Institute Group Co., Ltd., Guangzhou 510507, Guangdong, China)
关键词:
桥梁工程 Π形梁斜拉桥 双幅桥 涡振性能 抑振措施 风洞试验
Keywords:
bridge engineering Π-shaped girder cable-stayed bridge two parallel bridge vortex-induced vibration property vibration suppression measure wind tunnel test
分类号:
U441.3
DOI:
10.19721/j.cnki.1671-8879.2025.04.011
文献标志码:
A
摘要:
以某双幅大跨度Π形梁斜拉桥为工程背景,通过1:25比例节段模型风洞试验研究了既有桥梁(旧桥)及其邻近新建桥梁(新桥)之间的气动干扰效应,测试了单独新桥、单独旧桥以及双幅桥在-3°风攻角下的主梁涡振响应; 针对双幅桥试验中新桥竖向涡振超规范限值和旧桥扭转振动显著的问题,采用封闭人行道栏杆,设置导流板、抑流板和下稳定板4种气动措施以及组合措施优化了主梁断面涡振性能; 通过计算流体动力学(CFD)数值模拟给出了新、旧桥原设计方案和施加抑振措施后主梁断面附近流场分布,揭示了气动优化试验中的抑振机理。研究结果表明:单独新桥主梁断面涡振显著且最大振幅超过规范限值,单独旧桥主梁无明显涡振现象; 双幅桥试验中,当新桥在来流上游时,新桥对旧桥产生了不利的气动干扰,使新、旧桥均出现显著的涡振现象,当旧桥在来流上游时,由于旧桥本身涡振性能较好且对新桥有遮挡效应,新、旧桥主梁均未发生涡振; 单一措施对新桥主梁涡振抑制效果有限,对新桥采用2道高2.2 m下稳定板+外侧防撞护栏抑流板的组合措施能有效将新、旧桥的涡振控制在规范限值的20%以内; 组合措施破坏了新桥梁底和桥面栏杆处规律性旋涡脱落的形成,改善了新、旧桥主梁附近的流场分布,极大提高了双幅桥的涡振性能。
Abstract:
Based on the engineering background of a two parallel long-span Π-shaped girder cable-stayed bridge, the 1:25 scale segmental model wind tunnel tests were conducted to investigate the aerodynamic interference effects between an existing bridge(old bridge)and its adjacent newly constructed bridge(new bridge). The vortex-induced vibration(VIV)responses of main girders of the new bridge, old bridge, and the two parallel bridge were tested under a wind attack angle of -3°. Addressing the issues of the vertical VIV amplitude exceeding the code limit for the new bridge and the significant torsional vibration for the old bridge during the two parallel bridge tests, four aerodynamic measures, including enclosing pedestrian railings, installing guide vanes, flow suppression plates and lower stabilizing plates, as well as their combinations, were employed to optimize the VIV properties of main girders. The computational fluid dynamics(CFD)numerical simulations were utilized to analyze the flow field distributions around the main girder sections for both the original and modified schemes of the new and old bridges. The vibration suppression mechanisms during the aerodynamic optimization test were revealed. The research results indicate that the new bridge exhibits significant VIV with the maximum amplitudes exceeding the code requirements, while the old bridge shows negligible VIV phenomena. During the two parallel bridge tests, when the new bridge is at the upstream of the airflow, adverse aerodynamic interference occurs from the new bridge to the old bridge, causing noticeable VIV in both structures. When the old bridge is at the upstream of the airflow, its inherent satisfactory VIV properties combined with shielding effects on the new bridge prevent VIV occurrence in both girders. Single aerodynamic measures provide limited VIV suppression for the new bridge, whereas a combined solution of two 2.2 m-high lower stabilizing plates combined with flow suppression plates on the outer anti-collision guardrail effectively controls VIV amplitudes within 20% of the code limits for both bridges. The combination measure disrupts the formation of regular vortex shedding patterns near the girder bottom and bridge deck railings, improves the flow field distributions around main girders of both the new and old bridges, and significantly enhances the VIV properties of the two parallel bridge.3 tabs, 18 figs, 30 refs.

参考文献/References:

[1] 周 锐,杨詠昕,葛耀君,等.平行双幅桥梁的颤振控制试验研究[J].振动与冲击,2014,33(12):126-132.
ZHOU Rui, YANG Yong-xin, GE Yao-jun, et al. Tests for flutter control of a twin-separate bridge[J]. Journal of Vibration and Shock, 2014, 33(12): 126-132.
[2]陈政清,牛华伟,刘志文.双幅桥面桥梁主梁气动干扰效应研究[J].桥梁建设,2007,37(6):9-12.
CHEN Zheng-qing, NIU Hua-wei, LIU Zhi-wen. Study of aerodynamic interference effect on main girders of twin-deck bridges[J]. Bridge Construction, 2007, 37(6): 9-12.
[3]KIM S J, KIM H K, CALMER R, et al. Operational field monitoring of interactive vortex-induced vibrations between two parallel cable-stayed bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 123: 143-154.
[4]LI W L, PATRUNO L, NIU H W, et al. Experimental and numerical study on the aerodynamic admittance of twin-box bridge decks in sinusoidal gusts and continuous turbulence[J]. Journal of Bridge Engineering, 2023, 28(11): 04023078.
[5]LIU L L, ZOU Y F, HE X H, et al. Experimental investigation on vortex-induced vibration of a long-span rail-cum-road bridge with twin separated parallel decks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 228: 105086.
[6]秦 浩,廖海黎,李明水.大跨度双幅连续钢箱梁桥涡激振动特性风洞试验研究[J].振动与冲击,2014,33(14):206-210.
QIN Hao, LIAO Hai-li, LI Ming-shui. Vortex induced vibration performance of long span continuous steel twin box beam bridge based on wind tunnel test[J]. Journal of Vibration and Shock, 2014, 33(14): 206-210.
[7]KIMURA K, SHIMA K, SANO K, et al. Effects of separation distance on wind-induced response of parallel box girders[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007,96(6/7): 954-962.
[8]陈政清,牛华伟,李春光.并列双箱梁桥面风致涡激振动试验研究[J].湖南大学学报(自然科学版),2007,34(9):16-20.
CHEN Zheng-qing, NIU Hua-wei, LI chun-guang. Experimental study on wind-induced vortex shedding of parallel box-girder bridge[J]. Journal of Hunan University(Natural Sciences), 2007, 34(9): 16-20.
[9]朱乐东,周 奇,郭震山,等.箱形双幅桥气动干扰效应对颤振和涡振的影响[J].同济大学学报(自然科学版),2010,38(5):632-638.
ZHU Le-dong, ZHOU Qi, GUO Zhen-shan, et al. Aerodynamic interference effects on flutter and vortex-excited resonance of bridges with twin-separate parallel box decks[J]. Journal of Tongji University(Natural Science), 2010, 38(5): 632-638.
[10]SEO J, KIM H, PARK J, et al. Interference effect on vortex-induced vibration in a parallel twin cable-stayed bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 116: 7-20.
[11]刘志文,陈政清,刘 高,等.双幅桥面桥梁三分力系数气动干扰效应试验研究[J].湖南大学学报(自然科学版),2008,35(1):16-20.
LIU Zhi-wen, CHEN Zheng-qing, LIU Gao, et al. Experimental study of aerodynamic interference effects on aerostatic coefficients of twin decks bridges[J]. Journal of Hunan University(Natural Sciences), 2008, 35(1): 16-20.
[12]谭 彪,操金鑫,檀小辉,等.间距比对叠合梁双幅桥涡振性能的影响[J].同济大学学报(自然科学版),2020,48(9):1264-1270.
TAN Biao, CAO Jin-xin, TAN Xiao-hui, et al. Effect of gap distance ratio on vortex-induced vibration performance for bridge with twin composite girders[J]. Journal of Tongji University(Natural Science), 2020, 48(9): 1264-1270.
[13]周 奇,朱乐东.平行双幅斜拉桥涡振特性气弹模型试验研究[J].振动工程学报,2013,26(4):522-530.
ZHOU Qi, ZHU Le-dong. Study on vortex-induced oscillation of parallel bridge with twin-decks via aeroelastic model test[J]. Journal of Vibration Engineering, 2013, 26(4): 522-530.
[14]刘小兵,姜会民,刘慧杰,等.不同高宽比并列双幅箱梁气动升力的干扰效应[J].振动、测试与诊断,2023,43(1):103-108, 200.
LIU Xiao-bing, JIANG Hui-min, LIU Hui-jie, et al. Interference effect on aerodynamic lift of twin parallel box girders with different aspect ratios[J]. Journal of Vibration, Measurement and Diagnosis, 2023, 43(1): 103-108, 200.
[15]郭震山,孟晓亮,周 奇,等.既有桥梁对邻近新建桥梁三分力系数的气动干扰效应[J].工程力学,2010,27(9):181-186,200.
GOU Zhen-shan, MENG Xiao-liang, ZHOU Qi, et al. Aerodynamic interference effects of an existed bridge on aerodynamic coefficients of an adjacent new bridge[J]. Engineering Mechanics, 2010, 27(9): 181-186, 200.
[16]ÁLVAREZ A, NIETO F, KWORK K, et al. Aerodynamic performance of twin-box decks: a parametric study on gap width effects based on validated 2D URANS simulations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182: 202-221.
[17]PARK J, KIM S, KIM H K. Effect of gap distance on vortex-induced vibration in two parallel cable-stayed bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 162: 35-44.
[18]PARK J, KIM H K. Effect of the relative differences in the natural frequencies of parallel cable-stayed bridges during interactive vortex-induced vibration[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171: 330-341.
[19]ARGENTINI T, ROCCHI D, ZASSO A. Aerodynamic interference and vortex-induced vibrations on parallel bridges: The Ewijk Bridge during different stages of refurbishment[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147: 276-282.
[20]杨博闻,张玉平,杨 晔.辅助墩设置对大跨PK断面混合-组合梁斜拉桥受力性能的影响[J].长沙理工大学学报(自然科学版),2025,22(1):111-121.
YANG Bo-wen, ZHANG Yu-ping, YANG Ye. Influence of auxiliary pier setting on mechanical performance of long-span cable-stayed bridge with hybrid and composite girders incorporating PK section[J]. Journal of Changsha University of Science and Technology(Natural Science), 2025, 22(1): 111-121.
[21]ZHAO L, WU F Y, HAN T S, et al. Aerodynamic force distribution and vortex drifting pattern around a double-slotted box girder under vertical vortex-induced vibration[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2023, 241: 105548.
[22]刘小兵,李少杰,陈 帅,等.大间距并列双钝体箱梁气动干扰效应试验研究[J].世界桥梁,2018,46(2):35-40.
LIU Xiao-bing, LI Shao-jie, CHEN Shuai, et al. Experimental study of aerodynamic interference effects of twin parallel bluff box girders with large intervals[J]. World Bridges, 2018, 46(2): 35-40.
[23]管青海,李加武,胡兆同,等.栏杆对典型桥梁断面涡激振动的影响研究[J].振动与冲击,2014,33(3):150-156.
GUAN Qing-hai, LI Jia-wu, HU Zhao-tong, et al. Effects of railings on vortex-induced vibration of a bridge deck section[J]. Journal of Vibration and Shock, 2014, 33(3): 150-156.
[24]李春光,黄静文,张 记,等.边主梁叠合梁涡振性能气动优化措施风洞试验研究[J].振动与冲击,2018,37(17):86-92.
LI Chun-guang, HUANG Jing-wen, ZHANG Ji, et al. Aerodynamic optimization measures for VIV performances of a side girder composite beam based on wind tunnel tests[J]. Journal of Vibration and Shock, 2018, 37(17): 86-92.
[25]雷 伟,王 骑,廖海黎,等.梁侧导流板对π型叠合梁断面涡振性能影响及抑振机理研究[J].振动与冲击,2023,42(14):48-55.
LEI Wei, WANG Qi, LIAO Hai-li, et al. Influence of guide plates on the side of the edge girder on the VIV performance of the π-shaped composite deck section and its vibration suppression mechanism[J]. Journal of Vibration and Shock, 2023, 42(14): 48-55.
[26]钱国伟,曹丰产,葛耀君.Ⅱ型叠合梁斜拉桥涡振性能及气动控制措施研究[J].振动与冲击,2015,34(2):176-181.
QIAN Guo-wei, CAO Feng-chan, GE Yao-jun. Vortex-induced vibration performance of a cable-stayed bridge with Ⅱ shaped composite deck and its aerodynamic control measures[J]. Journal of Vibration and Shock, 2015, 34(2): 176-181.
[27]BRUNO L, KHRIS S. The validity of 2D numerical simulations of vortical structures around a bridge deck[J]. Mathematical and Computer Modelling, 2003, 37(7/8): 795-828.
[28]汪志雄,张志田,郄 凯,等.π型开口截面斜拉桥弯扭耦合涡激共振及气动减振措施研究[J].振动与冲击,2021,40(1):52-57,94.
WANG Zhi-xiong, ZHANG Zhi-tian, QIE Kai, et al. Bending-torsion coupled vortex induced resonance of π-type open section cable stayed bridge and aerodynamic vibration reduction measures[J]. Journal of Vibration and Shock, 2021, 40(1): 52-57, 94.
[29]董国朝,许育升,韩 艳,等.π型加劲梁软颤振特性及下稳定板的影响研究[J].振动工程学报,2022,35(6):1395-1403.
DONG Guo-chao, XU Yu-sheng, HAN Yan, et al. Soft flutter performance of π-shaped girder and the influence of lower stabilizers[J]. Journal of Vibration Engineering, 2022, 35(6): 1395-1403.
[30]刘志文,肖 晗,王 雷,等.Π型钢-混凝土结合梁断面涡激振动及气动控制措施[J].湖南大学学报(自然科学版),2022,49(3):68-78.
LIU Zhi-wen, XIAO Han, WANG Lei, et al. Vortex-induced vibration of a Π-shaped steel-concrete composite girder and its aerodynamic countermeasures[J]. Journal of Hunan University(Natural Sciences), 2022, 49(3): 68-78.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):44.

备注/Memo

备注/Memo:
收稿日期:2025-02-10
基金项目:国家自然科学基金项目(52208459); 湖南省教育厅科学研究项目(23B0312); 桥梁工程安全控制教育部重点实验室开放基金项目(22KB02); 长沙理工大学研究生科研创新项目(CSLGCX23149)
作者简介:王力东(1990-),男,湖南郴州人,副教授,博士研究生导师,E-mail:wangld@csust.edu.cn。
更新日期/Last Update: 2025-07-25