参考文献/References:
[1] 万建国.我国寒区山岭交通隧道防冻技术综述与研究展望[J].隧道建设(中英文),2021,41(7):1115-1131.
WAN Jian-guo. Review on and present situation and prospect of antifreezing technologies for tunnels in cold areas in China[J]. Tunnel Construction, 2021, 41(7): 1115-1131.
[2]魏星星,郑 波,王仁杰.季节性冻土隧道冻害机理分析及防冻探索[J].现代隧道技术,2018,55(2):44-50.
WEI Xing-xing, ZHENG Bo, WANG Ren-jie. Frost damage mechanisms and anti-freezing measures for tunnels in a seasonally frozen soil region[J]. Modern Tunnelling Technology, 2018, 55(2): 44-50.
[3]张晨曦,张明明,朱永全,等.西成铁路寒区主要隧道温度场及防寒设计分析[J].科学技术与工程,2022,22(3):1250-1256.
ZHANG Chen-xi, ZHANG Ming-ming, ZHU Yong-quan, et al. Temperature field and cold prevention design analysis of main tunnels in cold area of Xicheng Railway[J]. Science Technology and Engineering, 2022, 22(3): 1250-1256.
[4]FU H L, ZHANG J B, HUANG Z, et al. A statistical model for predicting the triaxial compressive strength of transversely isotropic rocks subjected to freeze-thaw cycling[J]. Cold Regions Science and Technology, 2018, 145: 237-248.
[5]QIU W L, TENG F, PAN S S. Damage constitutive model of concrete under repeated load after seawater freeze-thaw cycles[J]. Construction and Building Materials, 2020, 236: 117560.
[6]伍毅敏,许 鹏,黄 乐,等.季冻区隧道衬砌渐进劣化规律及工程影响[J].长安大学学报(自然科学版),2021,41(6):63-72.
WU Yi-min, XU Peng, HUANG Le, et al. Progressive deterioration pattern of tunnel lining in seasonal freezing zone and its engineering influence[J]. Journal of Chang'an University(Natural Science Edition), 2021, 41(6): 63-72.
[7]LYU Z T, XIA C C, WANG Y S, et al. Analytical elasto-plastic solution of frost heaving force in cold region tunnels considering transversely isotropic frost heave of surrounding rock[J]. Cold Regions Science and Technology, 2019, 163: 87-97.
[8]程 刚,王 俊.流变荷载作用下隧道二次衬砌损伤行为研究[J].现代隧道技术,2021,58(3):123-129,168.
CHENG Gang, WANG Jun. Study on damage behaviors of tunnel secondary lining under rheological load[J]. Modern Tunnelling Technology, 2021, 58(3): 123-129, 168.
[9]GUTIERRÉZ-CH J G, SENENT S, ZENG P, et al. DEM simulation of rock creep in tunnels using rate process theory[J]. Computers and Geotechnics,2022, 142: 104559.
[10]LIU W W, CHEN J X, LUO Y B, et al. Long-term stress monitoring and in-service durability evaluation of a large-span tunnel in squeezing rock[J]. Tunnelling and Underground Space Technology, 2022, 127: 104611.
[11]XU G W, GUTIERREZ M. Study on the damage evolution in secondary tunnel lining under the combined actions of corrosion degradation of preliminary support and creep deformation of surrounding rock[J]. Transportation Geotechnics, 2021, 27: 100501.
[12]杜学才,周 辉,郭鹏云,等.香炉山引水隧洞围岩的蠕变特性及模型研究[J].长江科学院院报,2022,39(12):75-81.
DU Xue-cai, ZHOU Hui, GUO Peng-yun, et al. Creep characteristics and modelling of surrounding rock of Xiangfushan Water Diversion Tunnel[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(12): 75-81.
[13]包焱坤,李地元,张鹏飞.软硬互层状岩石类材料双轴压缩蠕变特性试验研究[J].实验力学,2023,38(2):185-195.
BAO Yan-kun, LI Di-yuan, ZHANG Peng-fei. Experimental study on creep behavior of interbedded rock-like material with soft and hard layers under biaxial compression[J]. Journal of Experimental Mechanics, 2023, 38(2): 185-195.
[14]JIA C J, XU W Y, WANG R B, et al. Experimental investigation on shear creep properties of undisturbed rock discontinuity in Baihetan Hydropower Station[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 104: 27-33.
[15]TAHERI S R, PAK A, SHAD S, et al. Investigation of rock salt layer creep and its effects on casing collapse[J]. International Journal of Mining Science and Technology, 2020, 30(3): 357-365.
[16]WANG J B, ZHANG Q, SONG Z P, et al. Experimental study on creep properties of salt rock under long-period cyclic loading[J]. International Journal of Fatigue, 2021, 143: 106009.
[17]杨俊涛,宋彦琦,马宏发,等.考虑硬化和损伤效应的盐岩蠕变本构模型研究[J].岩土力学,2023,44(10):2953-2966.
YANG Jun-tao, SONG Yan qi, MA Hong-fa, et al. A creep constitutive model of salt rock considering hardening and damage effects[J]. Rock and Soil Mechanics, 2023, 44(10): 2953-2966.
[18]王军保,刘新荣,邵珠山,等.岩石非线性蠕变损伤模型研究[J].现代隧道技术,2014,51(3):79-84.
WANG Jun-bao, LIU Xin-rong, SHAO Zhu-shan, et al. A study of the nonlinear creep damage model for rocks[J]. Modern Tunnelling Technology, 2014, 51(3): 79-84.
[19]HOU R B, ZHANG K, TAO J, et al. A nonlinear creep damage coupled model for rock considering the effect of initial damage[J]. Rock Mechanics and Rock Engineering, 2019, 52: 1275-1285.
[20]JI F, LI R J, FENG W K, et al. Modeling and identification of the constitutive behavior of embedded non-persistent joints using triaxial creep experiments[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104434.
[21]LIU K Q, LI S C, DING W T, et al. Pre-supporting mechanism and supporting scheme design for advanced small pipes in the silty clay layer[J]. Tunnelling and Underground Space Technology, 2020, 98: 103259.
[22]张崇辉,梁庆国,孙纬宇,等.考虑流变效应的泥岩隧道仰拱变形特征研究[J].现代隧道技术,2023,60(4):116-127.
ZHANG Chong-hui, LIANG Qing-guo, SUN Wei-yu, et al. Study on deformation characteristics of tunnel inverts in mudstone considering rheological effects[J]. Modern Tunnelling Technology, 2023, 60(4): 116-127.
[23]刘 昌,张顶立,张素磊,等.考虑围岩流变及衬砌劣化特性的隧道长期服役性能解析[J].岩土力学,2021,42(10):2795-2807.
LIU Chang, ZHANG Ding-li, ZHANG Su-lei, et al. Analytical solution of the long-term service performance of tunnel considering surrounding rock rheology and lining deterioration characteristics[J]. Rock and Soil Mechanics, 2021, 42(10): 2795-2807.
[24]杨志全,甘 进,樊详珑,等.岩石冻融损伤机理研究进展及展望[J].防灾减灾工程学报,2023,43(1):176-188.
YANG Zhi-quan, GAN Jin, FAN Xiang-long, et al. Research progress and prospect on freeze-thaw damage mechanism of rocks[J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(1): 176-188.
[25]王章琼,晏鄂川.考虑围岩冻融损伤劣化效应的隧道长期稳定性研究[J].现代隧道技术,2017,54(2):68-72,80.
WANG Zhang-qiong, YAN E-chuan. Long-term stability of tunnels considering the degradation effects of freeze-thaw damage to surrounding rock[J]. Modern Tunnelling Technology, 2017, 54(2): 68-72, 80.
[26]李中英,崔永鹏,贾剑青,等.冻融循环条件下寒区隧道长期稳定性[J].科学技术与工程,2022,22(5):2032-2039.
LU Zhong-ying, CUI Yong-peng, JIA Jian-qing, et al. Long-term stability of cold region tunnel during freeze-thaw cycles[J]. Science Technology and Engineering, 2022, 22(5): 2032-2039.
[27]申艳军,杨更社,荣腾龙,等.岩石冻融循环试验建议性方案探讨[J].岩土工程学报,2016,38(10):1775-1782.
SHEN Yan-jun, YANG Geng-she, RONG Teng-long, et al. Proposed scheme for freeze-thaw cycle tests on rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1775-1782.
[28]WANG Y, FENG W K, WANG H J, et al. Rock bridge fracturing characteristics in granite induced by freeze-thaw and uniaxial deformation revealed by AE monitoring and post-test CT scanning[J]. Cold Regions Science and Technology, 2020, 177: 103115.
[29]WU F, GAO R B, LIU J, et al. New fractional variable-order creep model with short memory[J]. Applied Mathematics and Computation, 2020, 380: 125278.
[30]GAO Y F, YIN D S. A full-stage creep model for rocks based on the variable-order fractional calculus[J]. Applied Mathematical Modelling, 2021, 95: 435-446.
[31]WANG L Y, ZHOU F X. Analysis of elastic-viscoplastic creep model based on variable-order differential operator[J]. Applied Mathematical Modelling, 2020, 81: 37-49.
[32]LIU X L, LI D J, HAN C, et al. A Caputo variable-order fractional damage creep model for sandstone considering effect of relaxation time[J]. Acta Geotechnica, 2022, 17: 153-167.
[33]ZHANG L, LIU Y R, YANG Q. Study on time-dependent behavior and stability assessment of deep-buried tunnels based on internal state variable theory[J]. Tunnelling and Underground Space Technology, 2016, 51: 164-174.
[34]LYU C, LIU J F, ZHAO C X, et al. Creep-damage constitutive model based on fractional derivatives and its application in salt cavern gas storage[J]. Journal of Energy Storage, 2021, 44: 103403.