[1]丁文其,李睿佳,乔亚飞,等.盾构隧道快速连接件管片接缝平底密封垫防水性能[J].长安大学学报(自然科学版),2025,45(4):53-67.[doi:10.19721/j.cnki.1671-8879.2025.04.005]
 DING Wen-qi,LI Rui-jia,QIAO Ya-fei,et al.Waterproofing performance of flat-bottomed gaskets for segment joint of shield tunnels with quick connectors[J].Journal of Chang’an University (Natural Science Edition),2025,45(4):53-67.[doi:10.19721/j.cnki.1671-8879.2025.04.005]
点击复制

盾构隧道快速连接件管片接缝平底密封垫防水性能()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年4期
页码:
53-67
栏目:
桥梁与隧道工程
出版日期:
2025-07-30

文章信息/Info

Title:
Waterproofing performance of flat-bottomed gaskets for segment joint of shield tunnels with quick connectors
文章编号:
1671-8879(2025)04-0053-15
作者:
丁文其12李睿佳12乔亚飞12吴昱东12于 勇3黄继辉4
(1. 同济大学 土木工程学院,上海 200092; 2. 同济大学 岩土及地下工程教育部重点实验室,上海 200092; 3. 中铁第六勘察设计院集团有限公司,天津 300308; 4. 福建船政交通职业学院 轨道交通学院,福建 福州 350007)
Author(s):
DING Wen-qi12 LI Rui-jia12 QIAO Ya-fei12 WU Yu-dong12 YU Yong3 HUANG Ji-hui4
(1. College of Civil Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 3. China Railway Liuyuan Group Co., Ltd., Tianjin 300308, China; 4. School of Rail Transit, Fujian Chuanzheng Communications College, Fuzhou 350007, Fujian, China)
关键词:
盾构隧道 快速连接件 三元乙丙橡胶 平底密封垫 接缝防水性能 热氧老化 长期性能预测
Keywords:
shield tunnel quick connector ethylene propylene diene monomer flat-bottomed gasket waterproofing performance of segment joint thermal oxidative aging long-term performance prediction
分类号:
U454
DOI:
10.19721/j.cnki.1671-8879.2025.04.005
文献标志码:
A
摘要:
为探索新型平底密封垫的防水性能,对三元乙丙橡胶平底密封垫进行了数值计算,使用万能试验机进行了压缩试验,制作了混凝土管片试块,进行了足尺防水试验,设计并进行了不同张开量下三元乙丙橡胶密封垫压缩热氧老化试验,并使用阿伦尼乌斯方程预测了密封垫的长期防水性能。研究结果表明:错台分别为0、3、5mm时密封垫拼装所需的闭合压力分别为24.85、21.87、24.59 kN/m,平底面设计有效减小了密封垫闭合所需的拼装力; 不同错台下的闭合压力接近,说明取消柱脚结构减小了错台对密封垫压缩性能的影响; 在管片张开3 mm与错台5 mm的最不利工况下,平底密封垫的防水能力达到了0.8 MPa,满足短期设计防水要求的0.7 MPa; 混凝土试具试验得到的极限防水能力小于钢制试具,混凝土的粗糙表面降低了密封垫的防水能力,平底密封垫与混凝土之间的界面可能成为潜在的防水薄弱环节; 将密封垫底面纳入渗水路径考虑后,大部分工况下试验与数值模拟得到的耐水压差在80 kPa以内,数值模拟方法可靠; 与传统带柱脚结构的密封垫不同,取消柱脚结构后底面不再产生应力集中,其防水性能可能小于密封垫顶面; 平底密封垫在管片张开0、3 mm时,常温下老化系数分别为0.45和0.72,老化性能优于传统密封垫与圆柱体试件; 密封垫受到的压力越大,性能衰减越快,且对温度变化更敏感。
Abstract:
To investigate the waterproofing performance of a new type of flat-bottomed ethylene propylene diene monomer(EPDM)gasket, numerical simulations were conducted, compression tests were performed with a universal testing machine, concrete segment test blocks were fabricated for full-scale waterproofing tests, and compressed thermal-oxidative aging tests were designed and carried out under different joint openings. Additionally, the long-term waterproofing performance of the gaskets was predicted using the Arrhenius equation. The research results indicate that when the joint offset is 0, 3 and 5 mm, the closure pressure required for assembling the gasket is 24.85, 21.87, and 24.59 kN/m, respectively. The flat-bottomed design effectively reduces the assembly force required for gasket closure. The similarity in the closure pressure under different offset conditions indicates that the removal of the column base structure reduces the impact of joint offset on the compression performance of gasket. Under the most unfavorable condition of 3 mm joint opening and 5 mm offset, the flat-bottomed gasket achieves a waterproofing capacity of 0.8 MPa, meeting the short-term design waterproofing requirement of 0.7 MPa. The ultimate waterproofing capacity obtained from the test using concrete specimens is lower than that using steel specimens. The rough concrete surface reduces the waterproofing performance and may become a potential weak point for waterproofing. After considering the gasket bottom surface into in the seepage path, the maximum waterproofing pressures obtained through the simulation closely match the test results, with most deviations within 80 kPa,verifying the reliability of the numerical simulation method. Unlike traditional gaskets with column base structures, the removal of the column base eliminates stress concentration at the bottom surface, potentially resulting in lower waterproofing performance at the bottom than the top. Under the joint openings of 0 and 3 mm, the aging coefficients of flat-bottomed gaskets at room temperature are 0.45 and 0.72, respectively, indicating better aging resistance compared to traditional gaskets and cylindrical specimens. The higher the compression force applied to the gasket, the faster the performance of gaskets degradation, and the more sensitive it becomes to temperature change.3 tabs, 15 figs, 32 refs.

参考文献/References:

[1] 周 龙,闫治国,朱合华,等.深埋蓄排水盾构隧道衬砌结构力学性能试验及数值分析[J].现代隧道技术,2018,55(5):174-187.
ZHOU Long, YAN Zhi-guo, ZHU He-hua, et al. Experimental and numerical study on the behaviors of deep-buried water-storage and drainage shield tunnels[J]. Modern Tunnelling Technology, 2018, 55(5): 174-187.
[2]岳树桥,周质炎,彭芳乐.盾构隧道管片插入式快速连接件作用机理分析[J].地下空间与工程学报,2010,6(3):532-536.
YUE Shu-qiao, ZHOU Zhi-yan, PENG Fang-le. Mechanism analysis of plug-in quick-joint connecter for shield tunnel segment[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(3): 532-536.
[3]管攀峰,杨志豪.管片新型快速连接件研发及接缝力学性能分析[J].隧道与轨道交通,2018(1):1-6,55.
GUAN Pan-feng, YANG Zhi-hao. Research and development of new fast segment connector and mechanical property analysis of segment joint[J]. Tunnels and Rail Transit, 2018(1): 1-6, 55.
[4]柳 献,李海涛,曹伟飚.盾构隧道新型纵缝接头抗弯性能试验对比研究[J].现代隧道技术,2018,55(增2):1058-1068.
LIU Xian, LI Hai-tao, CAO Wei-biao. Comparative experimental study on bending resistance of a new type longitudinal joint connector in shield tunnelling[J]. Modern Tunnelling Technology, 2018, 55(S2): 1058-1068.
[5]柳 献,李海涛,管攀峰,等.快速接头盾构隧道衬砌结构设计参数研究[J].现代隧道技术,2019,56(6):19-26.
LIU Xian, LI Hai-tao, GUAN Pan-feng, et al. Research on design parameters for shield tunnel lining structure with quick connectors[J]. Modern Tunnelling Technology, 2019, 56(6): 19-26.
[6]毕湘利,柳 献,李文勇,等.盾构法地铁隧道管片新型连接件技术应用研究[J].城市轨道交通研究,2020,23(7):1-11.
BI Xiang-li, LIU Xian, LI Wen-yong, et al. Research on the application of new connecting segment technology in metro shield tunnel[J]. Urban Mass Transit, 2020, 23(7): 1-11.
[7]肖明清,薛光桥,赵明应.采用快速连接件的盾构隧道纵缝接头受力性能试验研究[J].现代隧道技术,2022,59(5):154-162.
XIAO Ming-qing, XUE Guang-qiao, ZHAO Ming-ying. Experimental research on mechanical performance of longitudinal joint of shield tunnels with quick connectors[J]. Modern Tunnelling Technology, 2022, 59(5): 154-162.
[8]官林星,孙 巍,张孟喜,等.盾构隧道环向快速连接件力学性能试验研究[J].隧道建设(中英文),2022,42(6):967-974.
GUAN Lin-xing, SUN Wei, ZHANG Meng-xi, et al. Mechanical performance and experimental research on circumferential fast connector of shield tunnel[J]. Tunnel Construction, 2022, 42(6): 967-974.
[9]鲁志鹏,何应道,赵明应.盾构隧道C-T型快速连接件受力性能研究[J].现代隧道技术,2022,59(增1):542-549.
LU Zhi-peng, HE Ying-dao, ZHAO Ming-ying. Research on mechanical behavior of C-T type quick connector in shield tunnel[J]. Modern Tunnelling Technology, 2022, 59(S1): 542-549.
[10]张雨蒙,张姣龙,曹伟飚,等.盾构隧道新型衬砌结构受力性能与设计参数[J].现代隧道技术,2018,55(5):201-209.
ZHANG Yu-meng, ZHANG Jiao-long, CAO Wei-biao, et al. Mechanical behaviors and design parameters of segmental tunnel linings with new type of joints[J]. Modern Tunnelling Technology, 2018, 55(5): 201-209.
[11]龚琛杰,丁文其.大直径水下盾构隧道接缝弹性密封垫防水性能研究——设计方法与工程指导[J].隧道建设(中英文),2018,38(10):1712-1722.
GONG Chen-jie, DING Wen-qi. Waterproof properties of elastic sealing gaskets used in segmental joints of large-diameter underwater shield tunnels: design methodology and engineering guidance[J]. Tunnel Construction, 2018, 38(10): 1712-1722.
[12]封 坤,谢宏明,肖明清,等.盾构隧道管片接缝密封垫区域平衡优化方法[J].中国公路学报,2022,35(7):184-192.
FENG Kun, XIE Hong-ming, XIAO Ming-qing, et al. A regional balanced optimal method for segment gasket of shield tunnels[J]. China Journal of Highway and Transport, 2022, 35(7): 184-192.
[13]肖明清,封 坤.盾构隧道结构韧性设计方法研究[J].中国公路学报,2023,36(8):204-213.
XIAO Ming-qing, FENG Kun. Study on the resilient structure design of shield tunnels[J]. China Journal of Highway and Transport, 2023, 36(8): 204-213.
[14]金跃郎,丁文其,肖明清,等.苏通GIL综合管廊超高水压盾构隧道接缝防水性能试验研究[J].隧道建设(中英文),2020,40(4):538-544.
JIN Yue-lang, DING Wen-qi, XIAO Ming-qing, et al. Experimental research on sealing behavior of segmental joints of Sutong GIL Utility Tunnel under ultra-high water pressure[J]. Tunnel Construction, 2020, 40(4): 538-544.
[15]薛光桥,何应道,赵明应,等.盾构隧道承插式接头管片防水性能试验研究[J].隧道建设(中英文),2023,43(增2):69-77.
XUE Guang-qiao, HE Ying-dao, ZHAO Ming-ying, et al. Experimental study on waterproof performance of shield tunnel segment with socket joint[J]. Tunnel Construction, 2023, 43(S2): 69-77.
[16]SHI C H, CAO C Y, LEI M F, et al. Time-dependent performance and constitutive model of EPDM rubber gasket used for tunnel segment joints[J]. Tunnelling and Underground Space Technology, 2015, 50: 490-498.
[17]张子新,张家奇,黄 昕,等.盾构隧道密封垫长期防水性能预测的试验研究[J].浙江大学学报(工学版),2020,54(1):118-125.
ZHANG Zi-xin, ZHANG Jia-qi, HUANG Xin, et al. Experimental study on prediction of long-term durability of sealing gasket of shield tunnel[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(1): 118-125.
[18]李睿佳,汪元冶,龚琛杰,等.三元乙丙橡胶密封垫长期防水性能预测研究[J].隧道建设(中英文),2024,44(增1):293-300.
LI Rui-jia, WANG Yuan-ye, GONG Chen-jie, et al. Prediction of long-term waterproof performance of ethylene propylene diene monomer sealing gasket[J]. Tunnel Construction, 2024, 44(S1): 293-300.
[19]王雅建.盾构衬砌接缝密封性能衰退演变机理多尺度研究[D].北京:中国地质大学(北京),2020.
WANG Ya-jian. Sealing performance degradation and evolution of shield lining joints-multiple scale research[D]. Beijing: China University of Geosciences(Beijing), 2020.
[20]董林伟,杨志勇,江玉生,等.暗挖装配式区间管片接缝密封垫老化研究[J].矿业科学学报,2021,6(2):196-203.
DONG Lin-wei, YANG Zhi-yong, JIANG Yu-sheng, et al. Study on the gasket durability in the segment joint of subsurface excavated fabricated section[J]. Journal of Mining Science and Technology, 2021, 6(2): 196-203.
[21]LIU Y K, ZHANG Q S, LIU R T, et al. Compressive stress-hydrothermal aging behavior and constitutive model of shield tunnel EPDM rubber material[J]. Construction and Building Materials, 2022, 320: 126298.
[22]GONG C J, XIE C R, ZHU H H, et al. Time-varying compressive properties and constitutive model of EPDM rubber materials for tunnel gasketed joint[J]. Construction and Building Materials, 2024, 433: 136734.
[23]张稳军,丁 超,张成平,等.不同错台量对复合型密封垫影响及长期防水预测[J].隧道建设(中英文),2020,40(3):337-345.
ZHANG Wen-jun, DING Chao, ZHANG Cheng-ping, et al. Influence of different dislocation amount on composite sealing gasket and long-term waterproofing performance prediction[J]. Tunnel Construction,2020,40(3):337-345.
[24]伍振志,杨林德,季倩倩,等.越江盾构隧道防水密封垫应力松弛试验研究[J].建筑材料学报,2009,12(5):539-543.
WU Zhen-zhi, YANG Lin-de, JI Qian-qian, et al. Experimental study on stress relaxation of waterproof gasket of river-crossing shield tunnel[J]. Journal of Building Materials, 2009, 12(5): 539-543.
[25]李睿佳,龚琛杰,丁文其.受压状态下盾构隧道接缝密封垫老化性能研究[J].铁道科学与工程学报,2023,20(5):1786-1799.
LI Rui-jia, GONG Chen-jie, DING Wen-qi. Aging performance under assembly pressure of joint gasket in shield tunnel[J]. Journal of Railway Science and Engineering, 2023, 20(5): 1786-1799.
[26]左 亮,肖绯雄.橡胶Mooney-Rivlin模型材料系数的一种确定方法[J].机械制造,2008,46(7):38-40.
ZUO Liang, XIAO Fei-xiong. A method for determining the material coefficient of rubber Mooney-Rivlin model[J]. Machinery, 2008, 46(7): 38-40.
[27]GENT A N. Engineering with rubber: how to design rubber components[M]. München: Carl Hanser Verlag GmbH & Co. KG, 2012.
[28]彭益成,龚琛杰,丁文其.基于零厚度内聚力单元的盾构隧道接缝密封垫张开渗流行为研究[J].中南大学学报(自然科学版),2022,53(11):4485-4493.
PENG Yi-cheng, GONG Chen-jie, DING Wen-qi. Research on seepage behavior of shield tunnel gasketed joint based on zero thickness cohesive element[J]. Journal of Central South University(Science and Technology), 2022, 53(11): 4485-4493.
[29]李咏今.硫化橡胶热氧老化时物理机械性能变质规律的研究[J].特种橡胶制品,1997,18(1):42-51.
LI Yong-jin. Study on degradation rule of physical mechanical property of vulcanizate during the period of heat ageing[J]. Special Purpose Rubber Products, 1997, 18(1): 42-51.
[30]GONG C J, DING W Q, SOGA K, et al. Failure mechanism of joint waterproofing in precast segmental tunnel linings[J]. Tunnelling and Underground Space Technology, 2019, 84: 334-352.
[31]GONG C J, DING W Q, SOGA K, et al. Sealant behavior of gasketed segmental joints in shield tunnels: An experimental and numerical study[J]. Tunnelling and Underground Space Technology, 2018, 77: 127-141.
[32]GONG C J, XIE C R, ZHU H H, et al. Prediction on the time-varying behavior of tunnel segment gaskets under compression[J]. Construction and Building Materials, 2024, 441: 137543.

相似文献/References:

[1]胡志平,彭建兵,黄强兵,等.地铁盾构隧道30°斜穿地裂缝的物理模拟试验[J].长安大学学报(自然科学版),2009,29(04):63.
 HU Zhi-ping,PENG Jian-bing,HUANG Qiang-bing,et al.Physical modeling test on shield tunnel crossing ground fissure with 30°[J].Journal of Chang’an University (Natural Science Edition),2009,29(4):63.
[2]罗刚,潘少康,张玉龙,等.双线盾构隧道下穿机场高速沉降及变形规律[J].长安大学学报(自然科学版),2019,39(04):100.
 LUO Gang,PAN Shao kang,ZHANG Yu long,et al.Settlement and deformation law of a doubletrack shield tunnel underpass airport expressway[J].Journal of Chang’an University (Natural Science Edition),2019,39(4):100.

备注/Memo

备注/Memo:
收稿日期:2025-01-22
基金项目:国家自然科学基金项目(52378405); 中国中铁股份有限公司科技研究开发计划(2025-重庆-11); 福建省自然科学基金项目(2022J01390);
作者简介:丁文其(1969-),男,江苏苏州人,教授,博士研究生导师,E-mail:dingwq@tongji.edu.cn。
更新日期/Last Update: 2025-07-25