[1]仇培云,李 清,吴 勋,等.隧道工程渣土资源化制备地聚物:煅烧温度与碱溶液浓度的优化[J].长安大学学报(自然科学版),2025,45(4):39-52.[doi:10.19721/j.cnki.1671-8879.2025.04.004]
 QIU Pei-yun,LI Qing,WU Xun,et al.Preparation of geopolymer from resource utilization of tunnel engineering muck: Optimization of calcination temperature and alkali solution concentration[J].Journal of Chang’an University (Natural Science Edition),2025,45(4):39-52.[doi:10.19721/j.cnki.1671-8879.2025.04.004]
点击复制

隧道工程渣土资源化制备地聚物:煅烧温度与碱溶液浓度的优化()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年4期
页码:
39-52
栏目:
桥梁与隧道工程
出版日期:
2025-07-30

文章信息/Info

Title:
Preparation of geopolymer from resource utilization of tunnel engineering muck: Optimization of calcination temperature and alkali solution concentration
文章编号:
1671-8879(2025)04-0039-14
作者:
仇培云12李 清3吴 勋3熊 磊3苏智垒3袁炳祥4
(1. 清华大学 公共安全研究院,北京 100084; 2. 广州地铁建设管理有限公司,广东 广州 510220; 3. 广东交科检测有限公司,广东 广州 510440; 4. 广东工业大学,土木与交通工程学院,广东 广州510006)
Author(s):
QIU Pei-yun12 LI Qing3 WU Xun3 XIONG Lei3 SU Zhi-lei3 YUAN Bing-xiang4
(1. Institute of Public Safety Research, Tsinghua University, Beijing 100084, China; 2. Guangzhou Metro Construction Management Co., Ltd., Guangzhou 510220, Guangdong, China; 3. Guangdong Jiaoke testing Co., Ltd., Guangzhou 510440, Guangdong, China; 4. School of Civil and Transportation Engineering, Guangdong University ofTechnology, Guangzhou 510006, Guangdong, China)
关键词:
隧道工程 工程渣土 试验研究 地聚物 力学性能 煅烧温度 碱溶液浓度
Keywords:
tunnel engineering engineering muck experimental research geopolymer mechanical properties calcination temperature alkali solution concentration
分类号:
TU50
DOI:
10.19721/j.cnki.1671-8879.2025.04.004
文献标志码:
A
摘要:
针对隧道工程渣土的资源化利用进行探索,重点研究隧道工程渣土制备地聚物的最佳煅烧温度和碱溶液浓度。通过将广州某地铁盾构隧道工程中的渣土作为原料,采用不同煅烧温度(600 ℃、750 ℃和900 ℃)和NaOH溶液物质的量浓度(8、10、12 mol/L)进行试验,并通过无侧限抗压强度测试(UCS)、扫描电子显微镜(SEM)、压汞孔隙法(MIP)和X射线衍射(XRD)分析等方法进行分析。研究结果表明:煅烧温度对地聚物性能影响显著,在煅烧温度为750 ℃时,地聚物的抗压强度达到了最高值40 MPa,相较于煅烧温度为600 ℃和900 ℃的样品分别提高了53.85%和17.65%; 随着温度的升高,高岭石的晶体结构遭到破坏,促进了铝硅酸盐的溶解,导致地聚物的形成更为完全; 当煅烧温度达到900 ℃时,部分地聚物因高温熔断而形成孔洞,导致抗压强度降低; SEM分析显示,在煅烧温度为750 ℃时地聚物展现出致密结构,在煅烧温度为600 ℃时地聚物呈现出松散的海绵状结构,表明其反应不充分; NaOH溶液物质的量浓度为10 mol/L时能够促进铝硅酸盐的溶解及地聚反应的进行,因此,制备的地聚物抗压强度最高; 随着NaOH溶液物质的量浓度增加,抗压强度呈先增大后减小的趋势,当NaOH溶液物质的量浓度超过10 mol/L时,地聚物表面出现裂纹,影响其性能,致使抗压强度轻微下降; XRD分析结果显示,煅烧后的渣土形成了非晶态结构,促进了地聚物的凝胶化,最终形成致密的网状结构; 建议煅烧隧道工程渣土的最佳温度为750 ℃,NaOH溶液最佳物质的量浓度为10 mol/L。
Abstract:
This paper investigated the resource utilisation of shield construction muck by optimising the calcination temperature and alkali concentration for geopolymer synthesis. Tunnel engineering muck obtained from a metro tunnel in Guangzhou was calcined at 600 ℃,750 ℃ and 900 ℃, and subsequently activated with NaOH solutions of 8, 10 and 12 mol/L. Unconfined compressive strength(UCS)testing, scanning electron microscopy(SEM), mercury intrusion porosimetry(MIP)and X-ray diffraction(XRD)were employed to characterise the geopolymers. The results show that calcination temperature strongly affects geopolymer performance, at750 ℃, the UCS reaches a maximum of 40 MPa, and increases by 53.85% and 17.65% relative to specimens calcined at 600 ℃ and 900 ℃, respectively. Increasing the calcination temperature progressively disrupts the kaolinite crystal lattice, enhancing aluminosilicate dissolution and yielding a more complete geopolymer network; however, partial melting at 900 ℃ generates pores and diminishes strength. SEM observations corroborate these findings, revealing a dense microstructure at 750 ℃ and a porous and sponge-like morphology at 600 ℃, indicative of incomplete reaction. The NaOH concentration of 10 mol/L best promotes aluminosilicate dissolution and geopolymerisation, affording the highest compressive strength; beyond this concentration, surface cracking ensues and strength declines slightly. XRD analysis confirms that calcination converts the muck into an amorphous phase, facilitating gel formation and ultimately producing a compact three-dimensional network. Accordingly, the optimal conditions for valorising tunnel engineering muck are a calcination temperature of 750 ℃ and a NaOH molar concentration of 10 mol/L. 5 tabs, 11 figs, 51 refs.

参考文献/References:

[1] 刘烨煊.建筑垃圾中盾构渣土无害化及资源化技术应用[J].资源节约与环保,2024(3):60-64,73.
LIU Ye-xuan. Harmless and resource utilization of shield dregs in construction waste[J]. Resources Economization & Environmental, 2024(3): 60-64, 73.
[2]杨维彬,邬 靖,姜 浩,等.高速铁路隧道进口段地质灾害协同处治技术[J].铁道勘察,2023,49(2):1-7.
YANG Wei-bin, WU Jing, JIANG Hao, et al. Collaborative treatment technology for landslide and tunnel diseases at the entrance section of the Tashao village tunnel in Baoji-Lanzhou high-speed railway[J]. Railway Investigation and Surveying, 2023, 49(2): 1-7.
[3]郝 彤,李鑫箫,冷发光,等.郑州市地铁粉质黏土层中盾构渣土制备同步注浆材料特性[J].长安大学学报(自然科学版),2020,40(3):53-62.
HAO Tong, LI Xin-xiao, LENG Fang-guang, et al. Synchronous grouting materials for shield slag in silty clay of Zhengzhou metro[J]. Journal of Chang'an University(Natural Science Edition), 2020, 40(3): 53-62.
[4]杨 盼,刘创奕,鹿庆蕊,等.纤维地聚物改性粉质黏土无侧限抗压强度试验研究[J].科学技术与工程,2024,24(13):5491-5499.
YANG Pan, LIU Chuang-yi, LU Qing-rui, et al. Experimental study on unconfined compressive strength of silty clay modified by fiber-toughened geological polymers[J]. Science Technology and Engineering, 2024, 24(13): 5491-5499.
[5]王正华,熊淑琴,武文皓,等.全固废烧结砖的制备及性能研究[J].青岛理工大学学报,2024,45(2):28-35.
WANG Zheng-hua, XIONG Shu-qin, WU Wen-hao, et al. Study on preparation and properties of all-solid waste fired bricks[J]. Journal of Qingdao University of Technology, 2024, 45(2): 28-35.
[6]王 祥,徐 甜,冉 军,等.岩溶地区地铁隧道盾构施工风险识别与评价研究[J].铁道勘察,2023,49(3):5-11.
WANG Xiang, XU Tian, RAN Jun, et al. Identification and evaluation on shield construction risk of metro tunnel in karst area[J]. Railway Investigation and Surveying, 2023, 49(3): 5-11.
[7]YUAN B, CHEN W, LI Z, et al. Sustainability of the polymer SH reinforced recycled granite residual soil: Properties, physicochemical mechanism, and applications[J]. Journal of Soils and Sediments, 2023, 23(1): 246-262.
[8]袁炳祥,李志杰,陈伟杰,等.基于PIV技术与分形理论的桩-土系统水平循环受荷模型试验研究[J].岩土力学与工程学报,2023,42(2):466-482.
YUAN Bing-xiang, LI Zhi-jie, CHEN Wei-jie, et al. Experimental study on lateral cyclic loading model of pile-soil system based on PIV technique and fractal theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 466-482.
[9]袁炳祥,樊立韬,李志杰,等.层状地基中水平受荷桩-土相互作用试验[J].中国公路学报,2022,35(11):62-72.
YUAN Bing-xiang, FAN Li-tao, LI-Zhi-jie, et al. Experimental study on pile soil interaction under horizontal load in layered foundation[J]. China Journal of Highway and Transport, 2022, 35(11): 62-72.
[10]陈 飞.固体废弃物填埋处理模式以及问题分析[J].皮革制作与环保科技,2022,3(20):165-167.
CHEN Fei. Mode and problem analysis of solid waste landfill treatment[J]. Leather Manufacture and Environmental Technology, 2022, 3(20): 165-167.
[11]李叙锋,章本本,王 倩,等.矿渣-粉煤灰基地聚物力学特性试验研究[J].市政技术,2022,40(10):1-5,12.
LI Xu-feng, ZHANG Ben-ben, WANG Qian, et al. Experimental study on mechanical properties of slag-fly ash based geopolymer[J]. Journal of Municipal Technology, 2022, 40(10): 1-5, 12.
[12]袁开新,何永健,张来君,等.地聚合物稳定建筑固废再生集料力学特性研究[J].中外公路,2024,44(6):75-89.
YUAN Kai-xin, HE Yong-jian, ZHANG Lai-jun, et al. Mechanical properties of geopolymer stabilized construction and demolition wastes recycled aggregate[J]. Journal of China & Foreign Highway, 2024, 44(6): 75-89.
[13]YUAN B, LIANG J, ZHANG B, et al. Optimized reinforcement of granite residual soil using a cement and alkaline solution: A coupling effect[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2025, 17(1): 509-523.
[14]王 健,郭良忠,覃 建.深圳光明新区特大滑坡抢险中的技术措施[J].水利水电快报,2018,39(6):93-95.
WANG Jian, GUO Liang-zhong, QIN Jian. Technical measures in rescue of huge landslide in Guangming New District, Shenzhen[J]. Express Water Resources & Hydropower Information, 2018, 39(6): 93-95.
[15]李华军,曾利群,鄢雨南,等.深圳地区风化花岗岩渣土在建筑材料中的应用实验研究[J].广东建材,2020,36(7):31-35.
LI Hua-jun, ZENG Li-qun, YAN Yu-nan, et al. Experimental study on the application of weathered granite residue to building materials in Shenzhen area[J]. Guangdong Building Materials, 2020, 36(7): 31-35.
[16]邱军付,张瑞峰,章银祥,等.建筑垃圾分离渣土热活化研究及其在盾构注浆料中的应用[J].新型建筑材料,2024,51(3):1-5,28.
QIU Jun-fu, ZHANG Rui-feng, ZHANG Yin-xiang, et al. Thermally activated construction waste separation residue and its application in shield grouting mortar[J]. New Building Materials, 2024, 51(3): 1-5, 28.
[17]ZHANG B, YUAN P, GUO H, et al. Effect of curing conditions on the microstructure and mechanical performance of geopolymers derived from nanosized tubular halloysite[J]. Construction and Building Materials, 2021, 268: 121186.
[18]李新宇,彭金财,段立伟,等.溶胶型纳米SiO2和减水剂对粉煤灰-矿渣地聚物性能的影响[J]. 市政技术,2024,42(2):21-26,114.
LI Xin-yu, PENG Jin-cai, DUAN Li-wei, et al. Effect of sol-type nano-SiO2 and plasticizer on the properties of fly ash-slag geopolymer[J]. Journal of Municipal Technology, 2024, 42(2): 21-26, 114.
[19]韩文静,宋进朝,陶 勇.纳米改性地聚物材料影响混凝土性能应用研究[J].材料研究与应用,2021,15(3):243-249.
HAN Wen-jing, SONG Jin-chao, TAO Yong. Study on the effect of nano-modified geopolymer materials on concrete properties[J]. Materials Research and Application, 2021, 15(3): 243-249.
[20]ZHANG B, GUO H, YUAN P, et al. Novel acid-based geopolymer synthesized from nanosized tubular halloysite: The role of precalcination temperature and phosphoric acid concentration[J]. Cement and Concrete Composites, 2020, 110: 103601.
[21]胡传林,陶永征,TARIQ J,等.煅烧黏土反应活性及其影响机理[J].建筑材料学报,2023,26(2):179-185,220.
HU Chuan-lin, TAO Yong-zhen, TARIQ J, et al. Reactivity of calcined clay and its influence mechanism[J]. Journal of Building Materials, 2023, 26(2): 179-185, 220.
[22]SLANY' M, KUZIELOVÁ E, EMLICˇKA M, et al. Meta bentonite and metakaolin-based geopolymers/zeolites: Relation between kind of clay, calcination temperature and concentration of alkaline activator[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(20): 10531-10547.
[23]赵川江,李晓英,张 超,等.热活化非高岭石质粘土制备水泥混合材的探索研究[J].武汉理工大学学报,2023,45(12):16-21.
ZHAO Chuan-jiang, LI Xiao-ying, ZHANG Chao, et al. Exploration of the thermal activatednon-kaolinite clay as cement admixture[J]. Journal of Wuhan University of Technology, 2023, 45(12): 16-21.
[24]魏 博,张一敏,包申旭.煅烧制度对高岭土活性及地聚物性能的影响[J].非金属矿,2016,39(4):31-34.
WEI Bo, ZHANG Yi-min, BAO Shen-xu. Effect of calcination conduction on activity of kaolin and property of geopolymer[J]. Non-Metallic Mines, 2016, 39(4): 31-34.
[25]YUAN B, CHEN W, ZHAO J, et al. Addition of alkaline solutions and fibers for the reinforcement of kaolinite-containing granite residual soil[J]. Applied Clay Science, 2022, 228: 106644.
[26]詹疆淮,李宏波,傅 博,等.不同碱当量、粉煤灰和矿渣掺量对碱激发粉煤灰-矿渣地聚物力学性能及微观结构的影响[J].科学技术与工程,2021,21(28):12218-12224.
ZHAN Jiang-huai, LI Hong-bo, FU Bo, et al. Effect of different alkali equivalent, fly ash and slag content on the mechanical properties and microstructure of alkali-activated fly ash-slag geopolymer[J]. Science Technology and Engineering, 2021, 21(28): 12218-12224.
[27]刘玉琳,袁胜洋,邓开元,等.NaOH激发粉煤灰地聚物强度特性及破坏形式试验研究[J].铁道标准设计,2024,68(7):1-10.
LIU Yu-lin, YUAN Sheng-yang, DENG Kai-yuan, et al. Experimental study on strength characteristics and failure modes of fly ash based geopolymer by NaOH alkali-activated[J]. Railway Standard Design, 2024, 68(7): 1-10.
[28]YONG H, KAMARUDIN H, ABDULLAH M M A B, et al. Effect of alkali concentration on mechanical properties of kaolin geopolymers[J]. Romanian Journal of Materials, 2012, 42: 179-186.
[29]陈忠清,朱泽威,吕 越.粉煤灰基地聚物加固土的强度及抗冻融性能试验研究[J].水文地质工程地质,2022,49(4):100-108.
CHEN Zhong-qing, ZHU Ze-wei, LYU Yue. Laboratory investigation on the strength and freezing-thawing resistance of fly ash based geopolymer stabilized soil[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 100-108.
[30]YUAN B, LIANG J, LI X, et al. Sustainable utilization of clay minerals-rich engineering muck via alkali activation: Optimization of pore structure by thermal treatment[J]. Applied Clay Science, 2024, 258: 107491.
[31]贾建业,李玉珍,刘建朝.蓝田高岭土的工艺矿物学研究[J].西安地质学院学报,1992,14(2):42-50.
JIA Jian-ye, LI Yu-zhen, LIU Jian-chao. Study on process mineralogy of Lantian kaolin[J]. Journal of Xi'an College of Geology, 1992, 14(2): 42-50.
[32]YUAN B, LIANG J, HUANG X, et al. Eco-efficient recycling of engineering muck for manufacturing low-carbon geopolymers assessed through LCA: Exploring the impact of synthesis conditions on performance[J]. Acta Geotechnica, 2024(2024): 1-19.
[33]顾海荣,张 鹏,王盛年,等.偏高岭土基地聚物改良土最优配比及固化效果分析[J].科学技术与工程,2022,22(17):7089-7098.
GU Hai-rong, ZHANG Peng, WANG Sheng-nian, et al. Analysis on optimum proportion and stabilization effect of metakaolin-based geopolymer soil[J]. Science Technology and Engineering, 2022, 22(17): 7089-7098.
[34]DAOU I, MOCUTA C, LECOMTE-NANA G L, et al. Dehydroxylation of kaolinite and halloysite-rich samples: An in situ study of the texture and structural evolutions[J]. Minerals, 2023, 13(11): 1418.
[35]ZHANG B, GUO H, YUAN P, et al. Geopolymerization of halloysite via alkali-activation: Dependence of microstructures on precalcination[J]. Applied Clay Science, 2020, 185: 105375.
[36]陈佳蓉,玉 婷,张佰发,等.利用黏土质渣土制备酸激发地聚物的研究[J].非金属矿,2023,46(5):18-21,34.
CHEN Jia-rong, YU Ting, ZHANG Bai-fa, et al. Investigation on preparing acid activated geopolymer from clay-rich engineering muck[J]. Non-Metallic Mines, 2023, 46(5): 18-21, 34.
[37]WAN Q, RAO F, SONG S, et al. Geothermal clay-based geopolymer binders: Synthesis and microstructural characterization[J]. Applied Clay Science, 2017, 146: 223-229.
[38]ELIMBI A, TCHAKOUTE H K, NJOPWOUO D. Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements[J]. Construction and Building Materials, 2011, 25(6): 2805-2812.
[39]WANG H, LI H, WANG Y, et al. Preparation of macroporous ceramic from metakaolinite-based geopolymer by calcination[J]. Ceramics International, 2015, 41(9): 11177-11183.
[40]TAN J, DE VLIEGER J, DESOMER P, et al. Co-disposal of construction and demolition waste(CDW)and municipal solid waste incineration fly ash(MSWI FA)through geopolymer technology[J]. Journal of Cleaner Production, 2022, 362: 132502.
[41]ZHANG Z, PROVIS J L, REID A, et al. Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence[J]. Cement and Concrete Research, 2014, 64: 30-41.
[42]刘 扬,王集昭,鲁乃唯,等.碱激发矿渣粉煤灰地聚物力学性能研究[J].中外公路,2024,44(6):67-74.
LIU Yang, WANG Ji-zhao, LU Nai-wei, et al. Research on mechanical properties of alkali-activated slag-fly ash geopolymers[J]. Journal of China & Foreign Highway, 2024, 44(6): 67-74.
[43]PROVIS J L. Alkali-activated materials[J]. Cement and Concrete Research, 2018, 114: 40-48.
[44]刘 扬,陈 湘,王柏文,等.碱激发粉煤灰-矿渣-电石渣基地聚物的制备及强度机理[J].硅酸盐通报,2023,42(4):1353-1362.
LIU Yang, CHEN Xiang, WANG Bai-wen, et al. Preparation and strength mechanism of alkali-activated fly ash-slag-carbide slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1353-1362.
[45]YANG W, LIU H, ZHU P, et al. Effect of recycled coarse aggregate quality on the interfacial property and sulfuric acid resistance of geopolymer concrete at different acidity levels[J]. Construction and Building Materials, 2023, 375: 130919.
[46]吕毅刚,肖百豪,韩伟威,等.激发剂含量及养护温度对偏高岭土基地聚物孔溶液pH的影响[J].长沙理工大学学报(自然科学版),2023,20(5):59-66.
LYU Gang-Yi, XIAO Bai-hao, HAN Wei-wei, et al. Effect of activator concent and curing temperature on the pH of pore solution of metakaolin-based geopolymer[J]. Journal of Changsha University of Science & Technology(Natural Science), 2023, 20(5): 59-66.
[47]ALDABSHEH I, KHOURY H, WASTIELS J, et al. Dissolution behavior of jordanian clay-rich materials in alkaline solutions for alkali activation purpose. Part I[J]. Applied Clay Science, 2015, 115: 238-247.
[48]AYENI O, ONWUALU A P, BOAKYE E. Characterization and mechanical performance of metakaolin-based geopolymer for sustainable building applications[J]. Construction and Building Materials, 2021, 272: 121938.
[49]ZHANG Y, LIU X, WANG C, et al. Development of sustainable geopolymer with excavation soil powder as precursor: Cementitious properties and thermal-activated modification[J]. Journal of Building Engineering, 2024, 91: 109745.
[50]肖津东.工程渣土制备地聚物的方法及性能研究[D].哈尔滨:哈尔滨工业大学,2022.
XIAO Jing-dong. Study on the methods and properties of geopolymers prepared by engineering sediment[D]. Harbin: Harbin Institute of Technology, 2022.

相似文献/References:

[1]罗 刚,石研玉,申 奇,等.水中悬浮隧道锚索横向动力特性分析[J].长安大学学报(自然科学版),2012,32(03):73.
 LUO Gang,SHI Yan-yu,SHENG Qi,et al.Lateral dynamic characteristics analysis for cable of submerged floating tunnel in water[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):73.
[2]易富君,韩 直,邓 卫.公路隧道群运营安全性综合评价方法[J].长安大学学报(自然科学版),2012,32(03):79.
 YI Fu-jun,HAN Zhi,DENG Wei.Comprehensive safety evaluation method of expressway tunnel group[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):79.
[3]王 磊,郭洋洋.特长公路隧道运营网络通风技术[J].长安大学学报(自然科学版),2012,32(04):51.
 WANG Lei,GUO Yang-yang.Network ventilation technology of operation period in super long highway tunnel[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):51.
[4]韩日美,宋战平,谢永利,等.土压平衡盾构土仓压力对地表沉降的影响[J].长安大学学报(自然科学版),2010,30(01):59.
 HAN Ri-mei,SONG Zhan-ping,XIE Yong-li,et al.Affection of soil warehouses pressure of EPB shield on ground settlement[J].Journal of Chang’an University (Natural Science Edition),2010,30(4):59.
[5]朱正国,陈明长,孙明磊.双连拱公路隧道围岩压力计算方法[J].长安大学学报(自然科学版),2010,30(02):75.
 ZHU Zheng-guo,CHEN Ming-zhang,SUN Ming-lei.Calculation method of pressure of surrounding rock on double-arch road tunnel[J].Journal of Chang’an University (Natural Science Edition),2010,30(4):75.
[6]刘 辉,李 波,吴从师,等.岩溶隧道掘进爆破震动效应分析[J].长安大学学报(自然科学版),2010,30(04):56.
 LIU Hui,LI Bo,WU Cong-shi,et al.Analysis on effects of vibration resulted from driving blasting in Karst tunnel[J].Journal of Chang’an University (Natural Science Edition),2010,30(4):56.
[7]朱春生,杨晓华,来弘鹏,等.公路隧道衬砌后空洞对结构安全的影响[J].长安大学学报(自然科学版),2010,30(05):63.
 ZHU Chun-sheng,YANG Xiao-hua,LAI Hong-peng,et al.Impact of empty hole behind expressway tunnel lining on structure safety[J].Journal of Chang’an University (Natural Science Edition),2010,30(4):63.
[8]来弘鹏,谢永利,杨晓华.不同应力场软弱围岩公路连拱隧道中墙受力特征[J].长安大学学报(自然科学版),2010,30(06):50.
 LAI Hong-peng,XIE Yong-li,YANG Xiao-hua.Stress characteristics of middle wall in soft-wreak surrounding rocks highway multiple-arch tunnel under different stress field[J].Journal of Chang’an University (Natural Science Edition),2010,30(4):50.
[9]来弘鹏,谢永利,杨晓华,等.不同应力场软弱围岩公路连拱隧道力学特征试验[J].长安大学学报(自然科学版),2008,28(06):60.
 LAI Hong-peng,XIE Yong-li,YANG Xiao-hua.Model tests for soft-weak surrounding rocks highway multiple-arch tunnel stress characteristics in different stress fields[J].Journal of Chang’an University (Natural Science Edition),2008,28(4):60.
[10]郭建新,高永涛.基于围岩破坏区和承载力的锚杆支护设计[J].长安大学学报(自然科学版),2008,28(06):65.
 GUO Jian-xin,GAO Yong-tao.Design of anchor bolt support based on analysis of surround rock damage area and bear force[J].Journal of Chang’an University (Natural Science Edition),2008,28(4):65.

备注/Memo

备注/Memo:
收稿日期:2025-01-15
基金项目:国家自然科学基金项目(52278336); 广东省基础与应用基础研究基金项目(2023B1515020061,2022A1515240037)
作者简介:仇培云(1980-),男,江苏丰县人,正高级工程师,工程博士,E-mail:pyqiu@126.com。
通信作者:袁炳祥(1983-),男,山东东平人,教授,工学博士,E-mail:yuanbx@gdut.edu.cn。
更新日期/Last Update: 2025-07-25