[1]徐鸥明,郭 嘉,许银行,等.水性环氧乳化沥青相容性研究进展[J].长安大学学报(自然科学版),2025,45(4):1-12.[doi:10.19721/j.cnki.1671-8879.2025.04.001]
 XU Ou-ming,GUO Jia,XU Yin-hang,et al.Research progress on compatibility of waterborne epoxy emulsified asphalt[J].Journal of Chang’an University (Natural Science Edition),2025,45(4):1-12.[doi:10.19721/j.cnki.1671-8879.2025.04.001]
点击复制

水性环氧乳化沥青相容性研究进展()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年4期
页码:
1-12
栏目:
道路工程
出版日期:
2025-07-30

文章信息/Info

Title:
Research progress on compatibility of waterborne epoxy emulsified asphalt
文章编号:
1671-8879(2025)04-0001-12
作者:
徐鸥明1郭 嘉1许银行2李 杨1万 硕1
(1. 长安大学 特殊地区公路工程教育部重点实验室,陕西 西安 710064; 2. 武汉市政工程设计研究院有限责任公司,湖北 武汉 430015)
Author(s):
XU Ou-ming1 GUO Jia1 XU Yin-hang2 LI Yang1 WAN Shuo1
(1. Key Laboratory for special Area Highway Engineering of Ministry of Education, Chang'an University,Xi'an 710064, Shaanxi, China; 2. Wuhan Municipal Engineering Design and Research Institute,Wuhan 430015, Hubei, China)
关键词:
道路工程 水性环氧乳化沥青 相容性 评价方法 改善措施
Keywords:
road engineering waterborne epoxy emulsified asphalt compatibility evaluation method improvement measure
分类号:
U416.217
DOI:
10.19721/j.cnki.1671-8879.2025.04.001
文献标志码:
A
摘要:
针对水性环氧乳化沥青应用于道路养护存在提前破乳和分层等相容性问题,调研了国内外水性环氧乳化沥青相容性的研究进展,深入探讨了影响其相容性的关键因素,归纳对比了其相容性评价方法,并从原材料、添加剂和工艺角度总结了其相容性改善措施。研究结果表明:水性环氧乳化沥青的相容属于工艺性相容,环氧树脂与沥青的溶解度参数存在差异是导致其破乳和分层的根源,乳化剂界面膜强度、液体黏度和共混体系粒径差等均显著影响水性环氧乳化沥青的相容性; 现有相容性评价方法可分为客观评价和主观评价,不同方法评价角度不同,原理不一样,且评价标准不统一,主观评价方法最易受到人为及外界因素的影响; 在制备水性环氧乳化沥青时,可以从选择溶解度参数相近的原材料、提高乳液分散均匀程度及添加含活性基团的外加剂等方面改善其的相容性; 在制备和施工过程中,应注意温度、时间等因素的影响,以获得分布均匀、性质稳定的水性环氧乳化沥青; 未来研究应聚焦于构建多相乳液体系模型和发展直观化与量化评价方法,进一步探究水性环氧乳化沥青相容性与混合料性能的内在关联,着力提升水性环氧乳化沥青相容性,并将相容性改善思想贯穿于整个生产和应用过程。
Abstract:
In view of the compatibility issues of waterborne epoxy emulsified asphalt(WEEA)applied in roadmaintenance, such as premature demulsification and phase separation, the research progress on the compatibility of WEEA both domestically and internationally was investigated, key factors affecting itscompatibility were thoroughly analyzed, compatibility evaluation methods were systematically categorized and comparatively analyzed, and compatibility improvement measures were summarized from the perspectives ofraw materials, additives, and processing techniques. The research results demonstrate that the compatibility of WEEA is processing-dependent. The difference in solubility parameters between epoxy resin andasphalt is identified as the root cause of demulsification and phase separation. The interfacial filmstrength of emulsifier, liquid viscosity, and particle size difference in the blendedsystem significantly affect the compatibility of WEEA. Existingcompatibility evaluation methods can be classified into objective assessments and subjective observations.Different methods are characterized by distinct evaluation perspectives and principles, and lack unified criteria. Subjective evaluation methods are particularly prone to being affected by human and external factors. When preparing the WEEA in practice, its compatibility can be improved by selecting raw materials with closely similar solubility parameters, enhancing emulsion dispersion homogeneity, and incorporating additives containingactive functional groups. During preparation and construction processes, attention should be paid to the factors such astemperature and duration to achieve uniformity and stability of WEEA.Future research should focus on developing the construction of multiphase emulsion systemmodels and the establishment of visualized and quantifiable evaluation methods, further exploration of the intrinsicrelationship between the compatibility of WEEA and mixture performance,investigation of strategies to enhance compatibility, and the integration of compatibility optimization principlesthroughout the entire production and application processes.5 tabs, 11 figs, 62 refs.

参考文献/References:

[1] MENG Y J, CHEN J, KONG W K, et al. Review of emulsified asphalt modification mechanisms and performance influencing factors[J]. Journal of Road Engineering, 2023, 3(2): 141-155.
[2]XU O M, LI Y, XU R T, et al. Performance evaluation of waterborne epoxy resin modified emulsified asphalt mixtures for asphalt pavement pothole repair[J]. Construction and Building Materials, 2022, 325: 126709.
[3]LIU M M, HAN S, PAN J, et al. Study on cohesion performance of waterborne epoxy resin emulsified asphalt as interlayer materials[J]. Construction and Building Materials, 2018, 177: 72-82.
[4]ZHANG Z Q, WANG S Q, LU G D. Properties of new cold patch asphalt liquid and mixture modified with waterborne epoxy resin[J]. International Journal of Pavement Engineering, 2020, 21(13): 1606-1616.
[5]张 烁,张 帅,张恒龙,等.水性环氧乳化沥青残留物的老化性能[J].公路交通科技,2023,40(3):1-7.
ZHANG Shuo, ZHANG Shuai, ZHANG Heng-long, et al. Aging properties of waterborne epoxy emulsified asphalt residue[J]. Journal of Highway and Transportation Research and Development, 2023, 40(3): 1-7.
[6]LI Y, YANG X Y, LU B. Preparation and curing properties of waterborne epoxy emulsified asphalt/DMP-30 composites[J]. Case Studies in Construction Materials, 2023, 18: e01869.
[7]ZHANG Q, XU Y H, WEN Z G. Influence of water-borne epoxy resin content on performance of waterborne epoxy resin compound SBR modified emulsified asphalt for tack coat[J]. Construction and Building Materials, 2017, 153: 774-782.
[8]惠 冰,李 扬,张炎棣,等.水性环氧乳化沥青相容性研究及固化机理分析[J].化工新型材料,2022,50(10):281-285.
HUI Bing, LI Yang, ZHANG Yan-di, et al. Study on the compatibility and curing mechanism of WBE emulsified asphalt[J]. New Chemical Materials, 2022, 50(10): 281-285.
[9]谷 雨,何丽红,杨 帆.水性环氧乳化沥青相容性研究综述[J].石油沥青,2018,32(1):1-9.
GU Yu, HE Li-hong, YANG Fan. Research review on the compatibility of waterborne epoxy emulsified asphalt[J]. Petroleum Asphalt, 2018, 32(1): 1-9.
[10]汤 文,旷 强,张宇翔,等.植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J].材料导报,2024,38(4):258-264.
TANG Wen, KUANG Qiang, ZHANG Yu-xiang, et al. Micromechanical properties and self-healing mechanism of vegetable oil microencapsulated asphalt mixture[J]. Materials Reports, 2024, 38(4): 258-264.
[11]彭 超,马红超,解传凯,等.蜡质温拌沥青的分子动力学模拟研究[J].粘接,2022,49(8):1-6.
PENG Chao, MA Hong-chao, XIE Chuan-kai, et al. Study of the wax based warm mix asphalt with molecular dynamics simulation[J]. Adhesion, 2022, 49(8): 1-6.
[12]夏 敏,罗运军,张文栓.超支化聚合物改性环氧树脂固化体系力学性能研究[J].工程塑料应用,2007,35(3):12-15.
XIA Min, LUO Yun-jun, ZHANG Wen-shuan. Study on mechanical properties of hyperbranched polymer modified epoxy resin curing systems[J]. Engineering Plastics Application, 2007, 35(3): 12-15.
[13]谷敬坤,叶章基,谭振华,等.采用Hansen溶解度参数进行环氧固化体系的匹配[J].化工学报,2013,64(6):2247-2256.
GU Jing-kun, YE Zhang-ji, TAN Zhen-hua, et al. Matching of epoxy curing system using Hansen solubility parameters[J]. CIESC Journal, 2013, 64(6): 2247-2256.
[14]郭留红,张书建,陈忠达,等.水性环氧乳化沥青固化条件和最佳配方研究[J].化工新型材料,2021,49(3):261-264,268.
GUO Liu-hong, ZHANG Shu-jian, CHEN Zhong-da, et al. Curing condition and optimum formulation of waterborne epoxy emulsified asphalt[J]. New Chemical Materials, 2021, 49(3): 261-264, 268.
[15]张林艳,赵映琴,封基良,等.环氧沥青混合料施工质量控制研究进展[J].科学技术与工程,2022,22(20):8577-8587.
ZHANG Lin-yan, ZHAO Ying-qin, FENG Ji-liang, et al. Research advances in construction quality control of epoxy asphalt mixture[J]. Science Technology and Engineering, 2022, 22(20): 8577-8587.
[16]QUEROL N, BARRENECHE C, CABEZA L F. Storage stability of bimodal emulsions vs. monomodal emulsions[J]. Applied Sciences, 2017, 7(12): 1267.
[17]夏春苗.聚合物改性乳化沥青多尺度结构的可控制备[D].杭州:浙江大学,2018.
XIA Chun-miao. Controllable preparation of multi-scale structure of polymer modified emulsified asphalt[D]. Hangzhou: Zhejiang University, 2018.
[18]马红孺.胶体排空相互作用理论与计算[J].物理学报,2016,65(18):19-32.
MA Hong-ru. Theory and calculations of colloidal depletion interaction[J]. Acta Physica Sinica, 2016, 65(18): 19-32.
[19]汪海年,郑文华,尤占平,等.聚合物改性剂和石油沥青相容性评价方法研究进展[J].交通运输工程学报,2023,23(1):8-26.
WANG Hai-nian, ZHENG Wen-hua, YOU Zhan-ping, et al. Research progress on compatibility evaluation methods of polymer modifiers and petroleum asphalts[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 8-26.
[20]张 弦,周 超,侯德华,等.水性环氧乳化沥青对冷再生混合料的性能影响[J].热固性树脂,2021,36(2):7-12.
ZHANG Xian, ZHOU Chao, HOU De-hua, et al. Influence of waterborne epoxy emulsified asphalt on the performance of cold recycled mixture[J]. Thermosetting Resin, 2021, 36(2): 7-12.
[21]张 庆,郝培文,白正宇.水性环氧树脂改性乳化沥青制备及其黏附性研究[J].公路交通科技,2015,32(9):9-14.
ZHANG Qing, HAO Pei-wen, BAI Zheng-yu. Research on preparation and adhesion of emulsified asphalt modified with waterborne epoxy resin[J]. Journal of Highway and Transportation Research and Development, 2015, 32(9): 9-14.
[22]姬杨蓓蓓,陈华鑫,鲍燕妮.改性沥青存储稳定性试验方法与指标[J].同济大学学报(自然科学版),2006,34(8):1035-1039.
JI Yang-bei-bei, CHEN Hua-xin, BAO Yan-ni. Experiment and index of storage stability of modified asphalt[J]. Journal of Tongji University(Natural Science), 2006, 34(8): 1035-1039.
[23]YU X, WANG J Y, SI J J, et al. Research on compatibilitymechanism of biobased cold-mixed epoxy asphalt binder[J]. Construction and Building Materials, 2020, 250: 118868.
[24]GALLU R M, CHIN F, DALMAS F, et al. Investigating compatibility between TPU and bitumen SARA fractions by means of Hansen solubility parameters and interfacial tension measurements[J]. Construction and Building Materials, 2021, 289: 123151.
[25]LI J, ZHANG Y Z, LIU E S. Evaluation of compatibilitybetween aged asphalt and rejuvenator using Hansen solubility parameters[C]// WALUBITA L F, HAJJ E Y, DAFALLA M, LIU Z. Road Materials and New Innovations in Pavement Engineering. New York: ASCE, 2011: 73-80.
[26]POLACCO G, FILIPPI S, MERUSI F, et al. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility[J]. Advances in Colloid and Interface Science, 2015, 224: 72-112.
[27]许培俊,朱 真,阚 寅,等.基于线型环氧树脂的环氧沥青相结构调控与增韧改性[J].公路,2022,67(6):295-301.
XU Pei-jun, ZHU Zhen, KAN Yin, et al. Phase structure control and toughening modification of epoxy asphalt based on linear epoxy resin[J]. Highway, 2022, 67(6): 295-301.
[28]GU Y, TANG B M, HE L H, et al. Compatibility of cured phase-inversion waterborne epoxy resin emulsified asphalt[J]. Construction and Building Materials, 2019, 229: 116942.
[29]肖淑欣,姜晓琴,刘新浩,等.水性环氧树脂固化剂的制备及其与乳液相容性的研究[J].涂料工业,2018,48(3):1-5.
XIAO Shu-xin, JIANG Xiao-qin, LIU Xin-hao, et al. Preparation of waterborne epoxy resin curing agent and its compatibility with emulsion[J]. Paint and Coatings Industry, 2018, 48(3): 1-5.
[30]WANG F Z, LIU Y P, HU S G. Effect of early cement hydration on the chemical stability of asphalt emulsion[J]. Construction and Building Materials, 2013, 42: 146-151.
[31]SHAN L Y, LI Z W, TIAN D, et al. Effect of anti-icing additives on the stability of emulsified asphalt binders[J]. Construction and Building Materials, 2021, 275: 121951.
[32]HE L, LIU L, CAO C, et al. Improved curing performances of epoxy resin by a structure-controllable self-emulsifying curing agent[J]. Journal of Adhesion Science and Technology, 2022, 36(5): 490-506.
[33]SATO T, ARAKI S, MORIMOTO M, et al. Comparison of Hansen solubility parameter of asphaltenes extracted from bitumen produced in different geographical regions[J]. Energy and Fuels, 2014, 28(2): 891-897.
[34]常卫平.水性环氧乳化沥青的应用研究[D].北京:北京建筑大学,2016.
CHANG Wei-ping. Study on the application of waterborne epoxy emulsion asphalt[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2016.
[35]孔 林,李 骏,罗群星,等.水性环氧树脂乳化沥青制备及性能研究[J].应用化工,2021,50(8):2076-2081.
KONG Lin, LI Jun, LUO Qun-xing, et al. Research on preparation and performance of waterborne epoxy emulsified asphalt[J]. Applied Chemical Industry, 2021, 50(8): 2076-2081.
[36]WANG P P, TIAN X G, ZHANG R, et al. Effect of waterborne epoxy resin on properties of modified emulsified asphalt and its microstructure[J]. Journal of Materials in Civil Engineering, 2021, 33(8): 04021177.
[37]李兴富.水性环氧树脂改性乳化沥青及混合料性能研究[D].重庆:重庆交通大学,2016.
LI Xing-fu. Study on properties of emulsified asphalt modified by waterborne epoxy resin and its mixture[D]. Chongqing: Chongqing Jiaotong University, 2016.
[38]LI M Y, MIN Z H, WANG Q C, et al. Effect of epoxy resin content and conversion rate on the compatibility and component distribution of epoxy asphalt: A MD simulation study[J]. Construction and Building Materials, 2022, 319: 126050.
[39]韩晓成.沥青组分对环氧沥青用环氧树脂微观形貌和性能的影响研究[D].南京:南京大学,2020.
HAN Xiao-cheng. Study on the influence of asphalt components on the microstructure and properties of epoxy resin for epoxy asphalt[D]. Nanjing: Nanjing University, 2020.
[40]钱 旦,范 宏.环氧沥青相容性研究进展[J].中国胶黏剂,2024,33(6):1-8.
QIAN Dan, FAN Hong. Research progress on compatibility of epoxy asphalt[J]. China Adhesives, 2024, 33(6): 1-8.
[41]XU L, DARA Y, MAGAR S, et al. Morphological and rheological investigation of emulsified asphalt/polymer composite based on gray-level co-occurrence matrix[J]. International Journal of Transportation Science and Technology, 2024, 14: 258-275.
[42]YANG J H, ZHANG Z Q, FANG Y. Compatibility evaluation between waterborne epoxy resin(WER)and SBR latex modified asphalt emulsion(SBRE)[J]. Journal of Traffic and Transportation Engineering(English Edition): 2024, 11(1): 160-171.
[43]周启伟.树脂-乳化沥青共混物的制备及性能研究[D].重庆:重庆交通大学,2019.
ZHOU Qi-wei. Study on preparation and properties of resin-emulsified asphalt blend[D]. Chongqing: Chongqing Jiaotong University, 2019.
[44]CAI X, HUANG W K, LIANG J, et al. Study of pavement performance of thin-coat waterborne epoxy emulsified asphalt mixture[J]. Frontiers in Materials, 2020, 7: 88.
[45]JI J, SHI Q W, ZHANG R, et al. Viscosity, mechanical properties and phase-separated morphology of waterborne epoxy asphalt[J]. Construction and Building Materials, 2022, 334: 127074.
[46]李 伟.非离子型水性环氧沥青的制备及其混合料应用研究[D].上海:上海应用技术大学,2020.
LI Wei. Study on preparation of nonionic waterborne epoxy asphalt and its mixture application[D]. Shanghai: Shanghai Institute of Technology, 2020.
[47]熊 涛,赵又珏.水性环氧树脂改性乳化沥青在公路养护中的应用研究[J].黏接,2024,51(2):84-87.
XIONG Tao, ZHAO You-jue. Research on the application of water-based epoxy resin modified emulsified asphalt in highway maintenance[J]. Adhesion, 2024, 51(2): 84-87.
[48]LI P F, JI J, WANG Z, et al. Performance evaluation and equivalent conversion of waterborne epoxy resin emulsified asphalt based on different evaporation methods[J]. Journal of Cleaner Production, 2022, 353: 131461.
[49]HUANG X F, WANG L, LAI Y B, et al. Fabrication of a nonionic self-emulsifiable waterborne epoxy curing agent with high cure properties[J]. Journal of Coatings Technology and Research, 2021, 18(2): 549-558.
[50]LI W, XU G L, XU B Q, et al. Preparation of waterborne P-N containing epoxy resin curing and its performances[J]. Pigment and Resin Technology, 2016, 45(5): 308-312.
[51]亢 阳,陈志明,闵召辉,等.顺酐化在环氧沥青中的应用[J].东南大学学报(自然科学版),2006,36(2):308-311.
KANG Yang, CHEN Zhi-ming, MIN Zhao-hui, et al. Application of maleation in epoxy asphalt[J]. Journal of Southeast University(Natural Science Edition), 2006, 36(2): 308-311.
[52]AI T, PANG H, WU X X, et al. Preparation and properties of waterborne epoxy-resin-emulsified asphalt modified by oxidized extraction oil[J]. Buildings, 2022, 12(12): 2133.
[53]DU X M, XU P J, CONG P L, et al. Compatibilization and toughness modification of linear aliphatic epoxy compound on paving epoxy asphalt[J]. Materials and Structures, 2020, 53(2): 42.
[54]SI J J, LI Y, WANG J Y, et al. Improving the compatibility of cold-mixed epoxy asphalt based on the epoxidized soybean oil[J]. Construction and Building Materials, 2020, 243: 118235.
[55]XU P J, CONG P L, LI D G, et al. Toughness modification of hyperbranched polyester on epoxy asphalt[J]. Construction and Building Materials, 2016, 122: 473-477.
[56]XU P J, WANG Y D, CHENG P J, et al. Toughness modification of waterborne epoxy emulsified asphalt by waterborne polyurethane elastomer[J]. Construction and Building Materials, 2023, 386: 131547.
[57]YOO P J, EOM B S, PARK K S, et al. Aggregate pre-coating approach using rubber- and silane-coupled thermoset polymer and emulsion for warm-mix asphalt mixtures[J]. Construction and Building Materials, 2017, 152: 708-714.
[58]王盘盘.水性环氧树脂改性乳化沥青混合料的设计及其性能研究[D].长沙:长沙理工大学,2018.
WANG Pan-pan. Design and performance study of emulsified asphalt mixture modified by waterborne epoxy resin[D]. Changsha: Changsha University of Science and Technology, 2018.
[59]李 江,原建安,戴经梁.乳化沥青性状的几点认识[J].石油沥青,2004,18(1):15-17.
LI Jiang, YUAN Jian-an, DAI Jing-liang. Cognizance of emulsified asphalt[J]. Petroleum Asphalt, 2004, 18(1): 15-17.
[60]侯 芸,董元帅,樊云龙,等.基于微观角度水性环氧乳化沥青固化机理研究[J].公路,2020,65(9):245-250.
HOU Yun, DONG Yuan-shuai, FAN Yun-long, et al. Curing mechanism of water-borne epoxy emulsified asphalt based on microstructure[J]. Highway, 2020, 65(9): 245-250.
[61]周启伟,凌天清,郝增恒,等.水性环氧树脂-乳化沥青共混物特性分析[J].建筑材料学报,2018,21(3):414-419.
ZHOU Qi-wei, LING Tian-qing, HAO Zeng-heng, et al. Feature analysis of waterborne epoxy resin-emulsified asphalt blend[J]. Journal of Building Materials, 2018, 21(3): 414-419.
[62]WANG L G, ZHANG Z R, LIU W Y, et al. Effects of epoxy resin value on waterborne-epoxy-resin-modified emulsified asphalt mixture performance[J]. Applied Sciences, 2024, 14(4): 1353.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):1.

备注/Memo

备注/Memo:
收稿日期:2025-01-13
基金项目:陕西省自然科学基金项目(2024JC-YBMS-309); 国家自然科学基金项目(52278431)
作者简介:徐鸥明(1979-),男, 汉,安徽巢湖人,教授, 工学博士,E-mail:joe52005@126.com。
更新日期/Last Update: 2025-07-25