[1]张皓,陈宜言,周建杰,等.预应力混凝土弯扭耦合构件非线性分析[J].长安大学学报(自然科学版),2025,45(3):115-127.[doi:10.19721/j.cnki.1671-8879.2025.03.010]
 ZHANG Hao,CHEN Yi-yan,ZHOU Jian-jie,et al.Nonlinear analysis of prestressed concrete members subjected to bending and torsion[J].Journal of Chang’an University (Natural Science Edition),2025,45(3):115-127.[doi:10.19721/j.cnki.1671-8879.2025.03.010]
点击复制

预应力混凝土弯扭耦合构件非线性分析()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年3期
页码:
115-127
栏目:
桥梁与隧道工程
出版日期:
2025-05-31

文章信息/Info

Title:
Nonlinear analysis of prestressed concrete members subjected to bending and torsion
文章编号:
1671-8879(2025)03-0115-13
作者:
张皓1陈宜言1周建杰1董桔灿2赵秋1
(1. 福州大学 土木工程学院,福建 福州 350108; 2. 云基智慧工程股份有限公司,广东 深圳 518000)
Author(s):
ZHANG Hao1 CHEN Yi-yan1 ZHOU Jian-jie1 DONG Ju-can2 ZHAO Qiu1
(1. School of Civil Engineering, Fuzhou University, Fuzhou 350108, Fujian, China; 2. Yunji Intelligent Engineering Co. Ltd., Shenzhen 518000, Guangdong, China)
关键词:
桥梁工程 弯扭耦合作用 全过程分析理论模型 预应力混凝土梁 优化算法
Keywords:
bridge engineering bending-torsion coupling effect theoretical model of full range analysis prestressed concrete beam optimized algorithm
分类号:
U448.35
DOI:
10.19721/j.cnki.1671-8879.2025.03.010
文献标志码:
A
摘要:
为研究预应力混凝土梁在弯扭耦合作用下的全过程受力性能,基于联合作用软化桁架模型(CA-STM)提出改进的弯扭耦合全过程分析理论模型。首先,根据预应力混凝土梁的弯扭耦合受力机理,建立满足预应力引起的初应力-应变关系的平衡方程、协调方程和材料本构方程。然后,基于既往规范引入考虑预应力效应的空心截面和实心截面初始扭矩计算公式,建立附加方程、薄壁应变和相容关系,并提出钢筋和预应力筋简化等效方法。在此基础上,采用梯度递减法代替传统试错法以提高求解速率和稳定性,并通过MATLAB编制预应力混凝土梁的弯扭耦合分析求解程序。最后,通过对比既有试验和理论结果,对所提出理论模型进行验证。研究结果表明:建立的空心截面和实心截面初始扭矩计算公式与既有试验结果吻合较好; 未考虑预应力效应时,由改进模型预测的开裂扭矩和极限扭矩偏小; 改进模型准确预测了预应力混凝土构件在弯扭耦合作用下的全过程扭矩-扭率曲线和弯矩-曲率曲线; 相较于传统试错法,提出的优化算法具有更高的求解速率和稳定性,其平均计算时间仅需12 s。
Abstract:
To study the full range performance of prestressed concrete beams under bending-torsion coupling effect, an improved theoretical model of full range analysis in bending-torsion coupling effect was proposed based on the combined action softening truss model(CA-STM). Firstly, according to the bending-torsion coupling force mechanism of prestressed concrete beams, the equilibrium equations, compatibility equations and constitutive relationships satisfying the initial stress-strain relationship caused by prestress were established. Then, the initial torque formulas of hollow and solid sections considering the prestressing effect were introduced based on the previous codes. Additional the equations, the strains and compatibility relations for thin walls were established, and the simplified equivalence methods for steel and prestressing tendons were also proposed. On this basis, the gradient decreasing method was used instead of the traditional trial-and-error method to improve the solution rate and stability, and the solution program for the bending-torsion coupling analysis of prestressed concrete beams was prepared by MATLAB. Finally, the proposed theoretical model was validated by comparing the existing experimental and theoretical results. It can be concluded that the established initial torque equations for hollow and solid sections are in good agreement with the existing test results. The result shows that the cracking and ultimate torque values predicted by the improved model are underestimated without considering the prestressing effect. The improved model accurately predicts the full range torque-twist curves and bending moment-curvature curves of prestressed concrete members subjected to bending-torsion effect. Compared with the traditional trial-and-error method, the proposed optimized algorithm provides a higher solution rate and stability, and its average computation time is only 12 s.3 tabs, 12 figs, 23 refs.

参考文献/References:

[1] 聂建国,唐 亮,魏茂林.钢-混凝土组合梁扭转的组合作用分析[J].工业建筑,2008(3):1-4.
NIE Jian-guo, TANG Liang, WEI Mao-ling. Analysis of composite actions in steel-concrete composite beams subjected to torsion[J]. Industrial Construction, 2008(3): 1-4.
[2]胡少伟,赵克宇,喻 江.复合弯扭作用下预应力单箱组合梁的扭转承载能力分析[J].华北水利水电大学学报(自然科学版),2015,36(2):1-6.
HU Shao-wei, ZHAO Ke-yv, YU Jiang. Analysis on the torsional bearing capacity of prestressed single-box composite beam under combined bending and torsion[J]. Journal of North China University of Water Resources and Electric Power(Natural Science Edition), 2015, 36(2): 1-6.
[3]HSU T T C, MO Y. Softening of concrete in torsional members-theroy and tests[J]. ACI Journal Proceedings, 1985, 82(3): 290-303.
[4] HSU T T C, MO Y. Softening of concrete in torsional members- prestressed concrete[J]. ACI Structural Journal, 1985, 82(5): 603-615.
[5]ZHANG H, ZHAO Q, XIAO F, et al. Improved softened truss model for prestressed concrete composite box girders with corrugated steel webs under pure torsion[J]. Engineering Structures, 2024, 302(3): 117380.
[6]GREENE G G. Behavior of reinforced concrete girders under cyclic torsion and torsion combined with shear: Experimental investigation and analytical models[D]. Rolla: University of Missouri-Rolla, 2006.
[7]GREENE G G, BELARBI A. Model for reinforced concrete members under torsion, bending, and shear. Ⅰ: Theory[J]. Journal of Engineering Mechanics, 2009, 135(9): 961-969.
[8]GREENE G G, BELARBI A. Model for reinforced concrete members under torsion, bending, and shear. Ⅱ: Model Application and Validation[J]. Journal of Engineering Mechanics, 2009,135(9): 970-977.
[9]BERNARDO L F A, TEIXEIRA M M. Modified softened truss-model for prestressed concrete beams under torsion[J]. Journal of Building Engineering, 2018, 19: 49-61.
[10]TARUTAL G M, SURIYA P. Nonlinear finite-element analysis of RC bridge columns under torsion with and without axial compression[J]. Journal of Bridge Engineering, 2016, 21(2): 4015037.
[11]HSU T T C, RRH Z. Softened membrane model for reinforced concrete elements in shear[J]. ACI Structural Journal, 2002, 99(4): 460-469.
[12]SILVA J, HOROWITZ B, BERNARDO L. Efficient analysis of beam sections using softened truss model[J]. ACI Structural Journal, 2017, 114(3): 765-774.
[13]NP EN 1992-1-1, Eurocode 2: Design of concrete structures—Part 1: General rules and rules for buildings[S].
[14]KOLLBRUNNER F C, BASLER K. Torsion in structures: An engineering approach[M]. Berlin: Springer, 1969.
[15]ZHANG H, ZHAO Q, CHEN Y Y, et al. Analytical model for flexural-torsional coupling behavior of prestressed corrugated steel-concrete composite girders[J]. Engineering Structures, 2024, 319(11): 118817.
[16]HSU T T C. Unified theory of reinforced concrete[M]. Boca Raton: CRC Press, 1993.
[17]JENG C, HSU T T C. A softened membrane model for torsion in reinforced concrete members[J]. Engineering Structures, 2009, 31(9): 1944-1954.
[18]BELARBI A, HSU T T C. Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete[J]. ACI Structural Journal, 1994, 91(4): 465-474.[19]ACI Committee 318, Building code requirements for structural concrete(ACI 318-14)and commentary(ACI 318R-14)[S].
[20]LAMPERT P, THURLIMANN B. Torsions-biege-versuche an stahlbetonbalken(torsion tests on reinforced concrete beams under torsion and bending)[D]. Zurich: ETH Zurich, 1969.
[21]TULONEN J, LAAKONEN A. Variable compression panel thickness for concrete members under bending and torsion: Experimental study[J]. Engineering Structures, 2023, 279(3): 115606.
[22]MARDUKHI J. The behavior of uniformly prestressed concrete box beams in combined torsion and bending[D]. Toronto: University of Toronto, 1974.
[23]IYENGAR K T S R, RANGAN B V. Strength and stiffness of reinforced concrete beams under combined bending and torsion[J]. American Concrete Institute Special Publication, 1968, 18: 403-440.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):44.

备注/Memo

备注/Memo:
收稿日期:2024-12-01
基金项目:福建省自然科学基金项目(2019J01232)
作者简介:张 皓(1995-),男,河南郑州人,工学博士研究生,E-mail:470268065@qq.com。
通信作者:赵 秋(1976-),男,福建福州人,教授,博士研究生导师,E-mail:zhaoqiu@fzu.edu.cn。
更新日期/Last Update: 2025-05-30