[1]朱伟华,刘国坤,黄国平,等.温度效应下大跨度悬索桥梁端纵向位移解析算法与力学特性[J].长安大学学报(自然科学版),2025,45(3):102-114.[doi:10.19721/j.cnki.1671-8879.2025.03.009]
 ZHU Wei-hua,LIU Guo-kun,HUANG Guo-ping,et al.Analytical algorithm and mechanical characteristics of girder-end longitudinal displacement for long-span suspension bridges under temperature effects[J].Journal of Chang’an University (Natural Science Edition),2025,45(3):102-114.[doi:10.19721/j.cnki.1671-8879.2025.03.009]
点击复制

温度效应下大跨度悬索桥梁端纵向位移解析算法与力学特性()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年3期
页码:
102-114
栏目:
桥梁与隧道工程
出版日期:
2025-05-31

文章信息/Info

Title:
Analytical algorithm and mechanical characteristics of girder-end longitudinal displacement for long-span suspension bridges under temperature effects
文章编号:
1671-8879(2025)03-0102-13
作者:
朱伟华123刘国坤4黄国平1周术明1周伟5
(1. 湖南城市学院 土木工程学院; 湖南 益阳 413000; 2. 湖南城市学院 陶粒混凝土技术研发与应用湖南省工程研究中心,湖南 益阳 413000; 3. 长沙理工大学 土木与环境工程学院,湖南 长沙 410114; 4. 湖南工程学院 建筑工程学院,湖南 湘潭 411104; 5. 湖北交通投资集团有限公司,湖北 武汉 430050)
Author(s):
ZHU Wei-hua123 LIU Guo-kun4 HUANG Guo-ping1 ZHOU Shu-ming1 ZHOU Wei5
关键词:
桥梁工程 温度效应下梁端纵向位移 线性叠加原理 数值解析算法 几何非线性效应 主缆找形
Keywords:
bridge engineering temperature-induced girder-end longitudinal displacement linear superposition principle numerical analytical algorithm geometric nonlinearity effect main cable shape-finding
分类号:
U448.25
DOI:
10.19721/j.cnki.1671-8879.2025.03.009
文献标志码:
A
摘要:
为探究悬索桥运营期梁端纵向位移影响伸缩缝、支座与阻尼器等附属约束装置的工作性能,构建温度效应下单跨地锚式悬索桥梁端纵向位移力学模型,并揭示梁端纵向位移计算机理; 首先,分析温度效应下悬索桥力学模型计算机理; 然后,拉格朗日坐标系下推导温度效应下缆索单元位形计算方程组; 随后,根据力学平衡与几何闭合条件,建立温度效应下主缆找形非线性方程组; 推理温度效应下加劲梁力学模型满足线性叠加原理,阐述加劲梁吊点纵向位移特性,并构建吊索与加劲梁力学模型方程组; 最后,通过联立悬索桥各体系计算方程组,创建温度效应下悬索桥梁端纵向位移数值解析算法。以千米级悬索桥为工程研究背景,对比分析构建的解析算法、有限元模型与实桥梁端纵向位移监测数据。研究结果表明:大跨度悬索桥力学模型可采用各系统分离计算方法,缆索体系符合几何非线性效应,加劲梁、吊索与索塔等体系均满足线性叠加原理; 解析算法梁端纵向位移计算值、有限元模型计算值与实桥梁端监测结果三者间计算差值率控制在9.4%以内; 梁端纵向位移与温度变化幅度满足拟线性关系,且有限元线性拟合函数斜率最大,解析算法最小,两者间计算差值是由加劲梁挠曲变形引起; 推导的精细化缆索单元计算理论与梁端纵向位移计算方法可作为大跨度悬索桥缆索构形计算的可靠理论与方法。
Abstract:
To investigate the operational performance of ancillary restraint devices(including expansion joints, bearings, and dampers)affected by girder-end longitudinal displacement for suspension bridges, a mechanical model under the temperature effect characterizing girder-end longitudinal displacement behavior for single-span ground-anchored suspension bridges was constructed, andthe computational mechanism underlying girder-end displacement was explicitly elucidated. Firstly, the computational principle of mechanical modeling for suspension bridges under temperature effect was analytically deconstructed. Secondly, the equations for calculating the configuration of cable element under the temperature effect were derived within the Lagrangian coordinate system. Thirdly, a nonlinear equation system for main cable shape-finding under the temperature effect was established through mechanical equilibrium analysis and geometric closure constraints. Fourthly, it was demonstrated that the mechanical model of the stiffened girder under thermal effects adheres to the linear superposition principle. The longitudinal displacement characteristics of the suspension points on the stiffened girder was elucidated and a coupled mechanical model system governing the interaction between hangers and the stiffening girder was established. Finally, a numerical analytical algorithm of girder-end longitudinal displacement under theperature effect was developed by calculating the equations of each system of the suspension bridge in parallel. Taking a kilometer-level suspension bridge as the engineering research context, this study conducts a comparative analysis of the constructed analytical algorithm, finite element model, and the girder-end longitudinal displacement monitoring data of an actual bridge. The results show that the mechanical model of long-span suspension bridges can adopt the separate calculation method of each system. The cable system conforms to the geometric nonlinear effect, and the systems such as stiffening girder, hangers and cable towers all satisfy the principle of linear superposition. The calculation difference rate among the girder-end longitudinal displacements calculated by the analytical algorithm and finite element model and the actural monitoring result is controlled within 9.4%. The girder-end longitudinal displacement and the temperature variation amplitude satisfy a quasi-linear relationship, and the slope of the finite element linear fitting function is the largest, while the analytical algorithm is the smallest. The calculation difference between the two mehods is caused by the deflection deformation of the stiffening girder. The derived calculation theory of refined cable element and the calculation method of girder-end longitudinal displacement can be used as reliable theory and method for the calculation of cable configuration in long-span suspension bridges.2 tabs, 13 figs, 26 refs.

参考文献/References:

[1] ZHANG W M, CHEN Y P. Predicting themaximum deflection and girder-end rotation of athree-tower suspension bridge under live load: An analytical algorithm[J]. Structures, 2022, 44: 295-305.
[2]SUN Y, ZHU H P, XU D. New method for shapefinding of self-anchored suspension bridges withthree-dimensionally curved cables[J]. Journalof Bridge Engineering, 2015(2): 1-22.
[3]王学勇,龚 旺,何 能,等.2 000 m级超大跨度悬索桥主缆全寿命期可靠度分析[J].建筑结构,2023,53(增1):493-498.
WANG Xue-yong, GONG Wang, HE Neng, et al. Reliability analysis of the main cable of the2 000-meter super long span suspension bridgeduring the whole life cycle[J]. Building Structure, 2023, 53(S1): 493-498.
[4]肖 鑫,郭 辉,苏朋飞,等.千米级高速铁路悬索桥静力特性分析[J].铁道科学与工程学报,2023,20(9):3229-3241.
XIAO Xin, GUO Hui, SU Peng-fei, et al. Staticcharacteristic analysis of high-speed railwaysuspension bridge with kilometer span[J]. Journalof Railway Science and Engineering, 2023, 20(9): 3229-3241.
[5]ZHANG W M, LU X F, CHANG J Q, et al. Ananalytical algorithm for estimating the deck'smaximum deflection and deck-end rotationangle of a suspension bridge under liveload[J]. Journal of Bridge Engineering, 2022, 27(7): 1-11.
[6]LING S H, CHUN D L, CHEN C T, et al. Male-andfemale-specific reproductive risk factors across thelifespan for dementia or cognitive decline: Asystematic review and meta-analysis[J]. BMCMedicine, 2023, 21(1): 457-457.
[7]ZHANG W M, CHANG J Q, LU X F, et al. Suspension bridge deformation and internalforces under the concentrated live load: Analyticalalgorithm[J]. Engineering structures, 2021, 248: 113271.
[8]梁龙腾,封周权,陈政清,等.漂浮体系悬索桥拟静态纵向运动特性及其控制[J].地震工程与工程振动,2022,42(1):110-121.
LIANG Long-teng, FENG Zhou-quan, CHENZheng-qing, et al. Characteristics of quasi-staticlongitudinal motion and its mitigation forfloating-type suspension bridges[J]. EarthquakeEngineering and Engineering Dynamics, 2022, 42(1): 110-121.
[9]龙关旭,韩万水,徐传昶,等.随机车流制动状态下斜拉桥黏滞阻尼器振动控制研究[J].振动与冲击,2021,40(11):78-85.
LONG Guan-xu, HAN Wan-shui, XU Chuan-chang, et al. Vibration control of cable stayed bridge withviscous damper under braking state of randomtraffic flow[J]. Journal of Vibration and Shock, 2021, 40(11): 78-85.
[10]梁龙腾,封周权,陈政清,等.大跨度悬索桥加劲梁纵向运动特性及其电涡流阻尼控制研究[J].地震工程与工程振动,2020,40(4):118-127.
LIANG Long-teng, FENG Zhou-quan, CHENZheng-qing, et al. Longitudinal movementcharacteristics of long span suspension bridgegirder and its control based on eddy currentdampers[J]. Earthquake Engineering andEngineering Dynamics, 2020, 40(4): 118-127.
[11]韩大章,郭 彤,黄灵宇,等.随机车辆荷载下大跨钢桥伸缩缝纵向位移响应及病害控制研究[J].振动与冲击,2019,38(24):172-178.
HAN Da-zhang, GUO Tong, HUANG Ling-yu, et al. A study on longitudinal displacements anddamage control of expansion joints of long-spansteel bridges under stochastic traffic loads[J]. Journal of Vibration and Shock, 2019, 38(24): 172-178.
[12]郭 辉,苏朋飞,赵欣欣,等.设计荷载作用下大跨度铁路悬索桥的梁端变位特征[J].铁道建筑,2019,59(1):14-19.
GUO Hui, SU Peng-fei, ZHAO Xin-xin, et al. Displacement characteristics at girder end of long span railway suspension bridge underdesign loads[J]. Railway Engineering, 2019, 59(1): 14-19.
[13]李永乐,向活跃,万田保,等.大跨度铁路桥梁梁端伸缩装置对列车走行性影响的研究[J].铁道学报,2012,34(2):94-99.
LI Yong-le, XIANG Huo-yue, WAN Tian-bao, et al. Performance of train running over expansionjoints at beam ends of long-span railway bridge[J]. Journal of the China Railway Society, 2012, 34(2): 94-99.
[14]SERNIZON C R, CESAR C L A, GOMES L D SR, et al. Cable structures: An exact geometricanalysis using catenary curve and considering thematerial nonlinearity and temperatureeffect[J]. Engineering Structures, 2022, 253: 113738.
[15]曹鸿猷,陈志军,吴巧云,等.基于单索理论的多塔悬索桥简化计算模型[J].中国公路学报,2016,29(4):77-84.
CAO Hong-you, CHEN Zhi-jun, WU Qiao-yun, et al. Simplified calculation model for multispansuspension bridges based on single cabletheory[J]. China Journal of Highway andTransport, 2016, 29(4): 77-84.
[16]朱伟华,颜东煌,许红胜.三塔悬索桥中塔适宜刚度数值解析算法[J].中国公路学报,2023,36(4):112-123.
ZHU Wei-hua, YAN Dong-huang, XUHong-sheng. Numerical analytical algorithm forsuitable stiffness of middle tower of three-towersuspension bridge[J]. China Journal of Highwayand Transport, 2023, 36(4): 112-123.
[17]黄国平,胡建华,万田保,等.竖向荷载作用下悬索桥纵向变位特征与机理[J].湖南大学学报(自然科学版),2023,50(1):78-89.
HUANG Guo-ping, HU Jian-hua, WAN Tian-bao, et al. Characteristics and mechanism oflongitudinal displacement for suspension bridgeunder vertical loads[J]. Journal of HunanUniversity(Natural Sciences), 2023, 50(1): 78-89.
[18]李光玲,韩万水,陈 笑,等.风和随机车流下悬索桥伸缩缝纵向变形[J].交通运输工程学报,2019,19(5):21-32.
LI Guang-ling, HAN Wan-shui, CHEN Xiao, et al. Longitudinal deformation of expansion joint ofsuspension bridge under wind and random trafficflow[J]. Journal of Traffic and TransportationEngineering, 2019, 19(5): 21-32.
[19]黄国平,胡建华,华旭刚,等.移动车辆作用下大跨度悬索桥梁端纵向位移机理[J].振动与冲击,2021,40(19):107-115.
HUANG Guo-ping, HU Jian-hua, HUA Xu-gang, et al. Girder end longitudinal displacementmechanism of long-span suspension bridge undermoving vehicles[J]. Journal of Vibration andShock, 2021, 40(19): 107-115.
[20]封周权,井昊坤,陈政清,等.列车作用下大跨径悬索桥纵向运动响应分析方法对比研究[J].土木工程学报,2024,41(3):69-80.
FENG Zhou-quan, JING Hao-kun, CHENZheng-qing, et al. Comparison of analysis methodsfor longitudinal motion response of a long-spansuspension bridge caused by a runningtrain[J]. China Civil Engineering Journal, 2024, 41(3): 69-80.
[21]胡启兵.星海湾跨海大桥吊杆更换方法研究[D].大连:大连海洋大学,2023.
HU Qi-bing. Study on the suspender replacementmethods of Xinghai Bay Bridge[D]. Dalian: Dalian Ocean University, 2023.
[22]宋枭鹏,黄国平,孙璋鸿,等.大跨悬索桥梁端纵向位移响应减振性能评估和设计[J].公路工程,2021,46(4):104-109.
SONG Xiao-peng, HUANG Guo-ping, SUNZhang-hong, et al. Assessment and design ofmitigation of longitude displacement ofsuspension bridges[J]. Highway Engineering,2021, 46(4): 104-109.
[23]范龙文,惠迎新,吕佳乐.非对称大跨悬索桥黏滞阻尼器参数优化研究[J].公路交通科技,2023,40(4):112-120,186.
FAN Long-wen, HUI Ying-xin, LYU Jia-le. Study onparameter optimization of viscous damper onasymmetric long-span suspensionbridge[J]. Journal of Highway andTransportation Research and Development, 2023, 40(4): 112-120, 186.
[24]HUANG G, HU J, HUA X, et al. Analyticsolution to longitudinal deformation ofsuspension bridges under live loads[J]. Journal ofBridge Engineering, 2023.
[25]李光玲,韩万水,张 路,等.极端制动车载下悬索桥伸缩缝服役状态评估[J].振动与冲击,2022,41(15):186-195,251.
LI Guang-ling, HAN Wan-shui, ZHANG Lu, et al. Service state evaluation for expansion jointsof suspension bridge under extreme vehiclebraking load[J]. Journal of Vibration and Shock, 2022, 41(15): 186-195, 251.
[26]万田保,李松林.大跨度铁路悬索桥纵向位移特征及纵向支承要求[J].桥梁建设,2020,50(4):29-35.
WAN Tian-bao, LI Song-lin. Longitudinaldisplacement characteristics and longitudinalsupporting requirements for long-span railwaysuspension bridge[J]. Bridge Construction, 2020, 50(4): 29-35.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):44.

备注/Memo

备注/Memo:
收稿日期:2024-12-25
基金项目:湖南省教育厅科研项目(24B0734,24A0566); 湖南省自然科学基金项目(2024JJ7082)
作者简介:朱伟华(1992-),男,湖南邵阳人,讲师,工学博士,E-mail:1542475739@qq.com。
通信作者:刘国坤(1988-),男,湖南益阳人,副教授,工学博士,E-mail:1425541054@qq.com。
更新日期/Last Update: 2025-05-30