[1]项长生,赵华,苏天涛,等.基于动力指纹与GTO-1D CNN-BiLSTM模型的梁桥损伤诊断[J].长安大学学报(自然科学版),2025,45(3):90-101.[doi:10.19721/j.cnki.1671-8879.2025.03.008]
 XIANG Chang-sheng,ZHAO Hua,SU Tian-tao,et al.Damage diagnosis of beam bridges based on dynamic signature and GTO-1D CNN-BiLSTM model[J].Journal of Chang’an University (Natural Science Edition),2025,45(3):90-101.[doi:10.19721/j.cnki.1671-8879.2025.03.008]
点击复制

基于动力指纹与GTO-1D CNN-BiLSTM模型的梁桥损伤诊断()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年3期
页码:
90-101
栏目:
桥梁与隧道工程
出版日期:
2025-05-31

文章信息/Info

Title:
Damage diagnosis of beam bridges based on dynamic signature and GTO-1D CNN-BiLSTM model
文章编号:
1671-8879(2025)03-0090-12
作者:
项长生12赵华1苏天涛3刘屺阳4李峰5
(1. 兰州理工大学 土木工程学院,甘肃 兰州 730050; 2. 兰州理工大学 西部土木工程防灾减灾教育部工程研究中心,甘肃 兰州 730050; 3. 兰州工业学院 土木工程学院,甘肃 兰州 730050; 4. 甘肃省交通科学研究院集团有限公司,甘肃 兰州 730070; 5. 甘肃五环公路工程有限公司,甘肃 兰州 730050)
Author(s):
XIANG Chang-sheng12 ZHAO Hua1 SU Tian-tao3 LIU Qi-yang4 LI Feng5
关键词:
桥梁工程 损伤识别 广义柔度矩阵 比例柔度矩阵 灰色关联分析 1D CNN-BiLSTM 人工大猩猩群体优化算法
Keywords:
bridge engineering damage diagnosis generalized flexibility matrix proportional flexibility matrix grey relational analysis 1D CNN-BiLSTM GTO algorithm
分类号:
U448.21
DOI:
10.19721/j.cnki.1671-8879.2025.03.008
文献标志码:
A
摘要:
针对服役梁桥易受材料和环境等因素影响出现易损性问题,以一座三跨连续梁桥为研究对象,提出一种基于灰关联广义比例柔度曲率差(GMGPFCD-A)构建的动力指纹和人工大猩猩群体优化算法(GTO)-一维卷积神经网络(1D CNN)-双向长短期记忆网络(BiLSTM)预测模型的梁桥分级损伤识别方法; 该方法以低阶模态参数构建的广义柔度矩阵和比例柔度矩阵为基础,结合灰色关联分析(GRA),构建动力指纹识别结构的损伤位置,并将该指标输入到1D CNN-BiLSTM损伤预测模型中进行量化分析,引入GTO优化预测模型的超参数以提高其对结构损伤程度的预测性能。研究结果表明:该模型不仅能在无需测得外部环境激励的情况下准确识别结构的损伤位置,并且在噪声水平10%以内具有一定的抗噪性; 经GTO优化后的预测模型对识别出的损伤部位的损伤程度准确率达93.548%; 提出模型收敛速度更快、更稳定,且具有较高预测准确率和较强鲁棒性。
Abstract:
Aiming at the vulnerability of serving beam bridges to the influence of factors such as materials and environment, a three-span continuous beam bridge was taken as the research object, and a beam bridge graded damage identification method based on dynamic fingerprint constructed by grey relational generalized proportional flexibility curvature difference(GMGPFCD-A)and artificial gorilla group optimization algorithm(GTO)-one-dimensional convolutional neural network(1D CNN)-bidirectional long short-term memory network(BiLSTM)prediction model was proposed. Firstly, the generalized flexibility matrix and proportional flexibility matrix constructed by low-order modal parameters were combined with grey relational analysis(GRA)to construct dynamic fingerprint to identify the damage position of the structure, and the index was input into the 1D CNN-BiLSTM damage prediction model for quantitative analysis. Finally, the hyperparameters of the GTO optimization prediction model were introduced to improve its prediction performance of the structural damage degree. The research results show that the model can not only accurately identify the damage location of the structure without measuring the external environmental excitation, but also has a certain noise resistance within 10% of the noise level; the prediction model after GTO optimization has an accuracy rate of 93.548% for the damage degree of the identified damaged parts; the proposed model converges faster, is more stable, and has higher prediction accuracy and stronger robustness.4 tabs, 10 figs, 28 refs.

参考文献/References:

[1] 王凌波,王秋玲,朱 钊,等.桥梁健康监测技术研究现状及展望[J].中国公路学报,2021,34(12):25-45.
WANG Ling-bo, WANG Qiu-Ling, ZHU Zao, et al. Current statusand prospects of research on bridge health monitoring technology[J]. China Journal of Highway and Transport, 2021, 34(12): 25-45.
[2]赵一男,公茂盛,杨 游.结构损伤识别方法研究综述[J].世界地震工程,2020,36(2):73-84.
ZHAO Yi-nan, GONG Mao-sheng, YANG You. A reviewof structure damage identification methods[J]. World Earthquake Engineering, 2020, 36(2): 73-84.
[3]FENG D M, MARIA Q F. Computer vision forSHM of civil infrastructure: From dynamic responsemeasurement to damage detection-A review[J].Engineering Structures, 2018, 156: 105-117.
[4]孙利民,尚志强,夏 烨.大数据背景下的桥梁结构健康监测研究现状与展望[J].中国公路学报,2019,32(11):1-20.
SHUN Li-min, SHANG Zhi-qiang, XIA Ye. Developmentand prospect of bridge structural health monitoring in thecontext of big data[J]. China Journal of Highway andTransport, 2019, 32(11): 1-20.
[5]PANDEY A K, BISWAS M. Damage detection in structuresusing changes in flexibility[J]. Journal of Sound and Vibration, 1994, 169(1): 3-17.
[6]LI J, WU B, ZENG Q C, et al. A generalized flexibilitymatrix based approach for structural damage detection[J]. Journal of Sound and Vibration, 2010, 329(22): 4583-4587.
[7]PENG X, YANG Q W. Sensor placement and structuraldamage evaluation by improved generalized flexibility[J]. IEEE Sensors Journal, 2021, 21(10): 11654-11664.
[8]LIU H, LI Z. An improved generalized flexibility matrixapproach for structural damage detection[J]. Inverse Problems in Science and Engineering, 2020, 28(6): 877-893.
[9]李国庆,罗 帅,苏 睿,等.环境激励下基于柔度矩阵分解的损伤诊断[J].应用数学和力学,2021,42(3):292-298.
LI Guo-qing, LUO Shuai, SU Rui, et al. Research ondamage diagnosis based on flexibility matrixdecomposition[J]. Applied Mathematics and Mechanics,2021, 42(3): 292-298.
[10]DUAN Z, YAN G, OU J, et al. Damage localization inambient vibration by constructing proportional flexibilitymatrix[J]. Journal of Sound and Vibration, 2005, 284(1-2):455-466.
[11]李子奇,蒋柱虎,王 力,等.基于深度学习的工程结构损伤识别研究进展[J].中国安全生产科学技术,2022,18(12):43-48.
LI Zi-qi, JIANG Zhu-hu, WANG Li, et al. Researchprogress in damage identification of engineeringstructure based on deep learning[J]. Journal of SafetyScience and Technology, 2022, 18(12): 43-48.
[12]朱劲松,李 欢,王世芳.基于卷积神经网络和迁移学习的钢桥病害识别[J].长安大学学报(自然科学版),2021,41(3):52-63.
ZHU Jing-song, LI Huan, WANG Shi-fang. Defectrecognition for steel bridge based on convolutional neuralnetwork and transfer learning[J]. Journal of Chang'anUniversity(Natural Science Edition), 2021, 41(3): 52-63.
[13]乔 朋,梁志强,徐 凯,等.基于机器学习的中小跨径桥梁技术状况评估[J].长安大学学报(自然科学版),2021,41(6):39-52.
QIAO Peng, LIANG Zhi-qiang, XU Kai, et al. Evaluationof technical condition of medium and small span bridgebased on machine learning[J]. Journal of Chang'anUniversity(Natural Science Edition), 2021, 41(6): 39-52.
[14]李禹剑,李 剑,辛伟瑶.一种基于BP神经网络的老旧桥梁健康诊断方法[J].国外电子测量技术,2020,39(2):19-22.
LI Yu-jian, LI Jian, XIN Wei-yao. Health diagnosismethod for old bridges based on BP neural network[J]. Electronic Measurement Technology, 2020, 39(2): 19-22.
[15]TANG Z, CHEN Z, BAO Y, et al. Convolutional neuralnetwork-based data anomaly detection method usingmultiple information for structural health monitoring[J].Structural Control and Health Monitoring, 2019, 26(1): e2296.
[16]张博耀.基于LSTM网络的某斜拉桥地震响应建模方法研究[D].哈尔滨:哈尔滨工业大学,2021.
ZHANG Bo-yao. Research on seismic response modelingmethod of a cable-stayed bridge based on LSTMnetwork[D]. Harbin: Harbin Institute of Technology, 2021.
[17]王子凡,张健飞.一种基于LSTM循环神经网络和振动测试的结构损伤检测方法[J].噪声与振动控制,2021,41(5):127-133.
WANG Zi-fan, ZHANG Jian-fei. A structural damagedetection method based on LSTM recurrent neutralnetwork and vibration testing[J]. Noise and Vibration Control, 2021, 41(5): 127-133.
[18]单德山,石 磊,谭康熹.联合卷积神经网络与长短期记忆深度网络的桥梁损伤识别[J].桥梁建设,2023,53(4):41-46.
SHAN De-shan, SHI Lei, TAN Kang-xi. Bridge damageidentification based on joint CNN and LSTM deepnetwork[J]. Bridge Construction, 2023, 53(4): 41-46.
[19]LIU S, YANG Y, FORREST J. Grey data analysis[M]. Singapore: Springer Singapore, 2017.
[20]ABDOLLAHZADEH B, SOLEIMANIAN G F, MIRJALILI S. Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems[J]. International Journal of Intelligent Systems, 2021, 36(10): 5887-5958.
[21]杨秋伟,王学航,李翠红.基于高次广义柔度灵敏度的结构损伤识别[J].固体力学学报,2019,40(2):157-168.
YANG Qiu-wei, WANG Xue-hang, LI Cui-hong. Damage identification of engineering structure based onhigh-order generalized flexibility sensitivity[J]. ChineseJournal of Solid Mechanics, 2019, 40(2): 157-168.
[22]段忠东,闫桂荣,欧进萍,等.结构比例柔度矩阵[J].哈尔滨工业大学学报,2006(8):1236-1238,1242.
DUAN Zhong-dong, YAN Gui-rong, OU Jin-ping, et al. Proportional flexibility matrix of structures[J]. Journal ofHarBin Institute of Technology, 2006(8): 1236-1238, 1242.
[23]邓聚龙.灰色系统基本方法[M].4版.武汉:华中理工大学出版社,1996.
DENG Ju-long. Basic method of grey system[M]. 4th ed.Wuhan: Huazhong University of Technology Press, 1996.
[24]邱锡鹏.神经网络与深度学习[M].北京:机械工业出版社,2021.
QIU Xi-peng. Neural networks and deep learning[M]. Beijing: Mechanical Industry Press, 2021.
[25]杨 铄,许清风,王卓琳.基于卷积神经网络的结构损伤识别研究进展[J].建筑科学与工程学报,2022,39(4):38-57.
YANG Shuo, XU Qing-feng, WANG Zuo-lin. Researchprogress on structure damage detection based on convolutional neural networks[J]. Journal of Architecture and Civil Engineering, 2022, 39(4): 38-57.
[26]魏佳恒,郭惠勇.基于贝叶斯优化BiLSTM模型的输电塔损伤识别[J].振动与冲击,2023,42(1):238-248.
WEI Jia-heng, GUO Hui-yong. Damage identification oftransmission tower based on BO-BiLSTM model[J]. Journal of Vibration and Shock, 2023, 42(1): 238-248.
[27]FU T C, BOGY D B. Dynamic load head-diskinterface durability of 50 percent sliders and polisheddisks[J]. IEEE Transactions on Magnetics, 1996, 32(5): 3747-3749.
[28]曹 晖,林秀萍.结构损伤识别中噪声的模拟[J].振动与冲击,2010,29(5):106-109,243-244.
CAO Hui, LIN Xiu-ping. Simulation of noise instructural damage identification[J]. Journal of Vibrationand Shock, 2010, 29(5): 106-109, 243-244.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):44.
[11]项长生,刘海龙,赵 驰,等.基于CART算法的桥梁损伤动力数据分析方法[J].长安大学学报(自然科学版),2023,43(4):50.[doi:10.19721/j.cnki.1671-8879.2023.04.006]
 XIANG Chang-sheng,LIU Hai-long,ZHAO Chi,et al.Dynamic data analysis method of bridge damage based on CART algorithm[J].Journal of Chang’an University (Natural Science Edition),2023,43(3):50.[doi:10.19721/j.cnki.1671-8879.2023.04.006]

备注/Memo

备注/Memo:
收稿日期:2024-12-21
基金项目:国家自然科学基金项目(51868045); 甘肃省高校青年博士支持项目(2025QB-100); 兰州市科技计划项目(2022-5-48); 甘肃省公交建集团科技项目(2022-ZH-061)
作者简介:项长生(1976-),男,安徽安庆人,副教授,工学博士,E-mail:xiangcs@lut.edu.cn。
通信作者:苏天涛(1989-),男,甘肃兰州人,讲师,工学博士,E-mail:sutt5008@163.com。
更新日期/Last Update: 2025-05-30