[1]张冲,袁胜洋,田凯元,等.湿化对新疆地区粗粒混合土力学特性影响试验[J].长安大学学报(自然科学版),2025,45(3):52-64.[doi:10.19721/j.cnki.1671-8879.2025.03.005]
 ZHANG Chong,YUAN Sheng-yang,TIAN Kai-yuan,et al.Test on wetting influence on mechanical characteristics of coarse-grained mixed soil in Xinjiang area[J].Journal of Chang’an University (Natural Science Edition),2025,45(3):52-64.[doi:10.19721/j.cnki.1671-8879.2025.03.005]
点击复制

湿化对新疆地区粗粒混合土力学特性影响试验()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年3期
页码:
52-64
栏目:
道路工程
出版日期:
2025-05-31

文章信息/Info

Title:
Test on wetting influence on mechanical characteristics of coarse-grained mixed soil in Xinjiang area
文章编号:
1671-8879(2025)03-0052-13
作者:
张冲12袁胜洋12田凯元12刘杰3刘学军4祁延录5刘先峰12
(1. 西南交通大学 土木工程学院,四川 成都 610031; 2. 西南交通大学 高速铁路线路工程教育部重点实验室,四川 成都 610031; 3. 新疆交通规划勘察设计研究院有限公司,新疆 乌鲁木齐 830006; 4. 新疆建筑科学研究院(有限责任公司),新疆 乌鲁木齐 830002; 5. 新疆铁道勘察设计院有限公司,新疆 乌鲁木齐 830011)
Author(s):
ZHANG Chong12 YUAN Sheng-yang12 TIAN Kai-yuan12 LIU Jie3 LIU Xue-jun4QI Yan-lu5 LIU Xian-feng12
关键词:
道路工程 粗粒混合土 试验研究 力学特性
Keywords:
road engineering coarse-grained mixed soil test research mechanical property
分类号:
U416.1
DOI:
10.19721/j.cnki.1671-8879.2025.03.005
文献标志码:
A
摘要:
为了探究浸水湿化对新疆地区粗粒混合土的力学特性影响,以吐鲁番地区的砾质土为研究对象,针对采用等比例缩尺法缩尺后的复配粗粒混合土开展击实与三轴试验,分析不同含水率粗粒混合土击实后的颗粒破碎量,研究湿化对粗粒混合土的剪切变形、孔隙比、抗剪强度等力学指标的影响规律。研究结果表明:粗粒混合土在击实后的颗粒破碎量随含水率的增加而逐渐减小,天然含水率为2%左右时有最大颗粒破碎量; 破碎可能性在颗粒粒径小于5 mm后显著降低。所有试样在剪切中均表现为先剪缩后剪胀的体应变发展规律,且剪胀性随围压增大逐渐降低; 由于水膜的润滑作用,湿化后土体的剪胀性进一步减小,当围压达到150 kPa后,湿化土样在剪切结束时的总体变接近于0; 试样的弹性模量随围压增大近似线性增长,剪胀角减小显著,泊松比略有减小; 湿化后不同围压下试样弹性模量发生衰减,且衰减值相近,剪胀角因水分作用进一步降低,但土体的泊松比受围压及湿化作用影响较小; 粗粒混合土的黏聚力随着土体湿化没有明显变化,而内摩擦角减小了约15%; 土骨架湿化后的强度衰减更多源于水分降低了粗颗粒之间的滑动摩擦。研究成果可为深入探究粗粒混合土的湿陷机理及本构关系、分析粗颗粒混合土质地基的稳定性提供参考。
Abstract:
In order to investigate the influence of wetting on the mechanical properties of coarse-grained mixed soil in Xinjiang region, the gravelly soil in Turpan area was taken as the research object, and compaction and triaxial test were carried out on the mixed coarse-grained soil after scaled by equal proportion scaling method. The particle breakage of coarse-grained mixed soil with different moisture contents was analyzed. The effects of wetting on the shear deformation, pore ratio, shear strength and other mechanical indexes of coarse-grained mixed soil were studied. The results show that the particle breakage rate of coarse-grained mixed soil in compaction decreases with the increase of water content, and there is the maximum particle breakage when the natural water content is about 2%. The possibility of breakage decreases significantly after the particle size is less than 5mm. All specimens show the development law of volumetric strain of contraction first and then dilatancy in shear, while the dilatancy gradually decreases with the increase of confining pressure. Due to the lubrication of water film, the dilatancy of the soil after wetting is further reduced. When the confining pressure reaches 150 kPa, the overall volumetric strain of the wetted soil sample at the end of the shear is close to 0. The elastic modulus of the sample increases approximately linearly with the increase of confining pressure, the dilatancy angle decreases significantly, and the Poisson's ratio decreases slightly. After wetting, the elastic modulus of the sample attenuates under different confining pressures, and the attenuation values are similar. The dilatancy angle is further reduced due to water action, but the Poisson's ratio of the soil is less affected by confining pressure and wetting. The cohesion of coarse-grained mixed soil does not change significantly with soil wetting, while the internal friction angle decreases by about 15%. The strength attenuation of soil skeleton after wetting is more due to the fact that water reduces the sliding friction between coarse particles. The research results can provide a reference for further exploring the collapsibility mechanism and constitutive relationship of coarse-grained mixed soil and analyzing the stability of foundation.1 tab, 17 figs, 37 refs.

参考文献/References:

[1] 李志农,金昌宁.新疆典型土类路基干压实试验[J].中国公路学报,2007,20(2):23-28.
LI Zhi-long, JIN Chang-ning. Test on dry compaction of typical earth subgrade in Xinjiang[J]. China Journal of Highway and Transport, 2007, 20(2): 23-28.
[2]杨 斌,赖国泉,杨有海,等.铁路路基戈壁土填料级配及压实特性分析[J].中国铁道科学,2011,32(1):7-11.
YANG Bin, LAI Guo-quan, YANG You-hai, et al. Analysis on the grading and the compaction characteristics of the gobi soil filling for railway subgrade[J]. China Railway Science, 2011, 32(1): 7-11.
[3]刘学军,周海明.粗粒混合土既有建(构)筑物地基沉降原因分析实例[J].西部探矿工程,2016,28(2):26-28.
LIU Xue-jun, ZHOU Hai-ming. Analysis of settlement causes of existing structures in coarse-grained mixed soil[J]. West-China Exploration Engineering, 2016, 28(2): 26-28.
[4]乔国文.吐鲁番地区公路工程湿陷性粗粒土评价方法优化及防治[J].西南公路,2015(4):85-91.
QIAO Guo-wen. Optimization of evaluation method and prevention of highway engineering collapsiblecoarse-grained soil in Turpan area[J]. Southwest Highway, 2015(4): 85-91.
[5]刘先峰,张炎飞,袁胜洋,等.交角对路基斜跨坎儿井暗渠临界深度的影响[J].铁道工程学报,2022,39(3):26-31.
LIU Xian-feng, ZHANG Yan-fei, YUAN Sheng-yang, et al. Effect of intersection angle on the critical depthof high-speed railway embankment obliquely crossing qanat culvert[J]. Journal of Railway EngineeringSociety, 2022, 39(3): 26-31.
[6]杨贝贝,阿不都沙拉木·加拉力丁,马 桂,等.吐鲁番市坎儿井空间分布格局的影响因子探析[J].中国农村水利水电,2017(12):198-203,208.
YANG Bei-bei, Abudushalamu·Jialaliding, MA Gui, et al. An analysis of the influencing factors of spatialdistribution pattern of karez in Turpan City[J]. China Rural Water and Hydropower, 2017(12): 198-203, 208.
[7]柳洪亮.吐鲁番坎儿井综述[J].中国农史,1986(4):24-32.
LIU Hong-liang. Overview of karez in Turpan[J]. Agricultural History of China, 1986(4): 24-32.
[8]张炎飞,刘先峰,袁胜洋,等.下伏坎儿井暗渠对高速铁路路基稳定性影响[J].中国铁道科学,2021,42(3):13-20.
ZHANG Yan-fei, LIU Xian-feng, YUAN Sheng-yang, et al. Influence of underlying qanat tunnel onstability of high-speed railway subgrade[J]. China Railway Science, 2021, 42(3): 13-20.
[9]杨晓华,张莎莎,刘 伟,等.粗颗粒盐渍土工程特性研究进展[J].交通运输工程学报,2020,20(5):22-40.
YANG Xiao-hua, ZHANG Sha-sha, LIU Wei, et al. Research progress on engineering properties ofcoarse-grained saline soil[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 22-40.
[10]成正川,罗发科,李勇刚,等.基于浸水载荷试验的粗粒填土地基工程特性研究[J].科学技术与工程,2015,15(21):173-176.
CHENG Zheng-chuan, LUO Fa-ke, LI Yong-gang, et al. Study on engineering properties of soil foundationbased on load test for coarse filling soil in the case of immersion[J]. Science Technology and Engineering, 2015, 15(21): 173-176.
[11]孙安元,吴亚平,蒲增钢,等.粗颗粒盐渍土室内溶陷装置设计及试验研究[J].铁道科学与工程学报,2018,15(6):1437-1444.
SUN An-yuan, WU Ya-ping, PU Zeng-gang, et al. Design and experimental study on the indoorcollapsibility device of coarse grained salty soil[J]. Journal of Railway Science and Engineering, 2018, 15(6): 1437-1444.
[12]侯彦凯.戈壁地区粗粒土地基湿陷特性研究[J].铁道工程学报,2016,33(6):31-34.
HOU Yan-kai. Research on the collapse characteristics of coarse grained soil in gobi region[J]. Journal ofRailway Engineering Society, 2016, 33(6): 31-34.
[13]吴亚平,梁 浩,魏明强,等.级配对粗颗粒硫酸盐渍土溶陷特性的影响[J].铁道工程学报,2019,36(1):12-16,30.
WU Ya-ping, LIANG Hao, WEI Ming-Qiang, et al. Influence of gradation on subsidence characteristic ofcoarse particle sulphate soil[J]. Journal of Railway Engineering Society, 2019, 36(1): 12-16, 30.
[14]ROLLINS K M, ROLLINS R L, SMITH T D, et al. Identification and characterization of collapsible gravels[J]. Journal of Geotechnical Engineering, 1994, 120(3): 528-542.
[15]ASHOUR M, ABBAS A, ALTAHRANY A, et al. Modelling the behavior of inundated collapsible soils[J]. Engineering Reports, 2020, 2(4): e12156.
[16]ZHANG S, LIU W, CHEN W. Collapse test studies on coarse grain sulfite saline soil as an embankment fillmaterial[J]. Arabian Journal of Geosciences, 2020, 13: 1-10.
[17]张建渊,胡海东,沈 鑫.兰新高速铁路沿线盐渍土地基的溶陷特性[J].铁道建筑,2018,58(3):59-63.
ZHANG Jian-yuan, HU Hai-dong, SHEN Xin. Collapsibility characteristics of saline soil foundation inLanzhou-Xinjiang High Speed Railway[J]. Railway Engineering, 2018, 58(3): 59-63.
[18]程东幸,刘志伟,柯 学.粗颗粒盐渍土溶陷性影响因素研究[J].工程地质学报,2013,21(1):109-114.
CHENG Dong-xing, LIU Zhi-wei, KE Xue. Field and laboratory tests for influential factors on salt resolvingslump of coarse particle saline soil[J]. Journal of Engineering Geology, 2013, 21(1): 109-114.
[19]WAN Q, YANG X, MA D, et al. Experimental study on collapsibility of coarse-grained saline soil subgradein the Qarhan Salt Lake Area,Western China[C]//WANG Hai-zhong, WEI Heng, ZHANG Lei, et al. CICTP 2020: Advanced Transportation Technologies and Development-Enhancing Connections. Reston: ASCE, 2020: 1546-1557.
[20]BAYESTEH H, GHASEMPOUR T. Role of the location and size of soluble particles in the mechanical behavior ofcollapsible granular soil: A DEM simulation[J]. Computational Particle Mechanics, 2019, 6: 327-341.
[21]袁雅贤,魏亚辉,冯怀平,等.兰新铁路第二双线盐渍土溶陷特性研究[J].铁道建筑,2016(2):92-96.
YUAN Ya-xian, WEI Ya-hui, FENG Huai-ping, et al. Study on melt sinking characteristics of saline soil inLanzhou-Xinjiang Second Double Track Railway[J]. Railway Engineering, 2016(2): 92-96.
[22]范 文,魏亚妮,于 渤,等.黄土湿陷微观机理研究现状及发展趋势[J].水文地质工程地质,2022,49(5):144-156.
FAN Wen, WEI Ya-ni, YU Bo, et al. Research progress and prospect of loess collapsible mechanism inmicro-level[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 144-156.
[23]谢婉丽,王延寿,马中豪,等.黄土湿陷机理研究现状及发展趋势[J].现代地质,2015,29(2):397-407.
XIE Wan-li, WANG Yan-shou, MA Zhong-hao, et al. Research status and prospect of loess collapsibilitymechanism[J]. Geoscience, 2015, 29(2): 397-407.
[24]程东幸,樊柱军,高建伟,等.粗颗粒盐渍土力学参数的现场直剪试验研究[J].工程勘察,2017,45(12):21-23,35.
CHENG Dong-xing, FAN Zhu-jun, GAO Jian-wei, et al. Study on the field shearing test of coarse grainedsaline soil[J].Geotechnical Investigation & Surveying, 2017, 45(12): 21-23, 35.
[25]CHANG D, LAI Y, YU F. An elastoplastic constitutive model for frozen saline coarse sandy soil undergoingparticle breakage[J]. Acta Geotechnica, 2019, 14(6): 1757-1783.
[26]张莎莎, 杨晓华. 粗粒盐渍土大型冻融循环剪切试验[J]. 长安大学学报(自然科学版), 2012, 32(3): 11-16.
ZHANG Sha-sha, YANG Xiao-hua. Large shear test on coarse saline soil with freeze-thaw cycle[J]. Journalof Chang'an University(Natural Science Edition), 2012, 32(3): 11-16.
[27]WANG S, DING J, XU J, et al. Shear strength behavior of coarse-grained saline soils after freeze-thaw[J]. KSCE Journal of Civil Engineering, 2019, 23(6): 2437-2452.
[28]吴 琪,孙苏豫,杭天柱,等.砂-粉混合料颗粒接触状态的临界条件确定[J].哈尔滨工程大学学报,2024,45(2):277-283,297.
WU Qi, SUN Su-yu, HANG Tian-zhu, et al. Procedure for characterizing the critical particle contact state ofsand-fines mixtures[J]. Journal of Harbin Engineering University, 2024, 45(2): 277-283, 297.
[29]SU Y. Investigation of the mechanical behavior of fine/coarse soil mixture[D]. Paris: Ecole Des Ponts Paris Tech, 2021.
[30]潘家军,孙向军.粗颗粒土缩尺方法及缩尺效应研究进展[J].长江科学院院报,2023,40(11):1-8.
PAN Jia-jun, SUN Xiang-jun. A review of downscaling methods for coarse granular soil and theireffectiveness[J]. Journal of Changjiang River Scientific Research Institute,2023, 40(11): 1-8.
[31]朱俊高,刘 忠,翁厚洋,等.试样尺寸对粗粒土强度及变形试验影响研究[J].四川大学学报(工程科学版),2012,44(6):92-96.
ZHU Jun-gao, LIU Zhong, WENG Hou-yang, et al. Study on effect of specimen size upon strength and deformation behavior of coarse-grained soil in triaxial test[J]. Journal of Sichuan University(Engineering Science Edition), 2012, 44(6): 92-96.
[32]王 飞,徐佩华,高井望,等.基于PFC方法的粗粒土三轴试验尺寸效应研究[J].公路工程,2014,39(2):80-83,162.
WANG Fei, XU Pei-hua, GAO Jing-wang, et al. Research on size effects of coarse-grained soils triaxial testsbased on PFC[J]. Highway Engineering, 2014, 39(2): 80-83, 162.
[33]亓 帅.循环荷载下高铁路基粗-细粒混合料力学特性[D].杭州:浙江大学,2020.
QI Shuai. Mechanical behaviors of coarse grain-fines mixture of high-speed railway embankment under cyclic loadings[D]. Hangzhou: Zhejiang University, 2020.
[34]朱俊高,翁厚洋,吴晓铭,等.粗粒料级配缩尺后压实密度试验研究[J].岩土力学,2010,31(8):2394-2398.
ZHU Jun-gao, WENG Hou-yang, WU Xiao-ming, et al. Experimental study of compact density of scaledcoarse-grained soil[J]. Rock and Soil Mechanics, 2010, 31(8): 2394-2398.
[35]VERMEER P A. DE BORST R, VERMEER P A, et al. Non-associated plasticity for soils,concrete and rock[J]. Heron, 1984, 29(3): 1-64.
[36]李 振,邢义川.干密度和细粒含量对砂卵石及碎石抗剪强度的影响[J].岩土力学,2006,27(12):2255-2260.
LI ZHEN, XING Yi-chuan. Effects of dry density and percent fines on shearing strength of sandy cobble and broken stone[J]. Rock and Soil Mechanics, 2006, 27(12): 2255-2260.
[37]D G·弗雷德隆德,H·拉哈尔佐.非饱和土力学[M].北京:中国建筑工业出版社,1997.
FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M]. Beijing: China Architecture & Building Press, 1997.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):1.

备注/Memo

备注/Memo:
收稿日期:2024-12-17
基金项目:国家自然科学基金项目(52168066)
作者简介:张 冲(1995-),男,湖北宜昌人,工学博士研究生,E-mail:civilzc@my.swjtu.edu.cn。
通信作者:袁胜洋(1987-),男,四川泸州人,副教授,工学博士,E-mail:shengyang.yuan@swjtu.edu.cn。
更新日期/Last Update: 2025-05-30