[1]钱振东,许子健,闵一桐,等.铜尾矿作沥青混合料填料的可行性与环境影响评估[J].长安大学学报(自然科学版),2025,45(3):17-25.[doi:10.19721/j.cnki.1671-8879.2025.03.002]
 QIAN Zhen-dong,XU Zi-jian,MIN Yi-tong,et al.Feasibility and environmental impact assessment of copper tailings as asphalt mixture filler[J].Journal of Chang’an University (Natural Science Edition),2025,45(3):17-25.[doi:10.19721/j.cnki.1671-8879.2025.03.002]
点击复制

铜尾矿作沥青混合料填料的可行性与环境影响评估()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年3期
页码:
17-25
栏目:
道路工程
出版日期:
2025-05-31

文章信息/Info

Title:
Feasibility and environmental impact assessment of copper tailings as asphalt mixture filler
文章编号:
1671-8879(2025)03-0017-09
作者:
钱振东1许子健1闵一桐1胡帮艳12曹峥3
(1. 东南大学 智能运输系统研究中心,江苏 南京 211189; 2. 新疆大学 建筑工程学院,新疆 乌鲁木齐市 830046; 3. 江西万铜环保材料有限公司,江西 九江 332100)
Author(s):
QIAN Zhen-dong1 XU Zi-jian1 MIN Yi-tong1 HU Bang-yan12 CAO Zheng3
(1. Intelligent Transportation System Research Center, Southeast University, Nanjing 211189, Jiangsu, China; 2. College of Civil Engineering and Architecture, Xinjiang University, Urumqi 830046, Xinjiang, China; 3. Jiangxi Wantong Environmental Protection Materials Co., Ltd., Jiujiang 332100, Jiangxi, China)
关键词:
道路工程 铜尾矿 沥青胶浆 沥青混合料 路用性能 重金属浸出
Keywords:
road engineering copper tailings asphalt mastic asphalt mixture road performance heavy metal leaching
分类号:
U414
DOI:
10.19721/j.cnki.1671-8879.2025.03.002
文献标志码:
A
摘要:
为提高铜尾矿(CT)的固废利用率,探讨了用CT替代石灰岩矿粉(LP)作为沥青混合料填料的可行性,并评估了其对环境的潜在影响。表征了铜尾矿的物理和化学性质,根据5种替代率(0、25%、50%、75%、100%)和3种填料体积分数(25%、30%、35%)配制了沥青胶浆和沥青混合料,然后采用温度扫描试验评估了沥青胶浆的流变性能,并通过车辙试验、低温小梁弯曲试验、冻融劈裂试验和浸水马歇尔试验验证了其路用性能,还通过酸溶液重金属浸出试验评估了其环境影响。研究结果表明:与LP相比,CT具有更小的粒径和428 m2/kg的比表面积,有利于增强填料与沥青之间的附着力,但CT中更高的SiO2含量与亲水系数可能导致沥青混合料抗水损性能的下降; 随着CT替代率的增加,沥青胶浆的复数模量显著提高,特别是在75%替代率和30%体积分数的CT组合中,复数模量提高了39%~62%,且相位角减小,表明CT能够增强沥青胶浆的高温稳定性和抗变形能力; CT沥青混合料的抗车辙能力比LP沥青混合料高5%,在低温下的最大弯拉应变减少了3.0×10-4,冻融劈裂试验强度平均减少6.5%,但均能满足路用性能要求; 此外,CT中Cu、Ba等重金属析出率远小于规范要求,环境风险可忽略不计。因此,综合考虑路面性能和环境因素,CT可成为天然矿物填料的替代品。
Abstract:
To improve the solid waste utilization rate of copper tailings(CT), the feasibility of replacing the limestone powder(LP)with CT as an asphalt mixture filler was explored, and its potential environmental impacts were evaluated. The physical and chemical properties of CT were characterized. The asphalt mastics and asphalt mixtures were prepared based on five substitution rates(0, 25%, 50%, 75% and 100%)and three filler volume fractions(25%, 30% and 35%). The rheological properties of asphalt mastics were evaluated using temperature scanning tests. The road performance was verified through the rutting test, low-temperature bending beam test, freeze-thaw splitting test, and water immersion Marshall test. In addition, the environmental impact was assessed through the acid solution heavy metal leaching test. The research results show that compared to LP, CT has a smaller particle size and a specific surface area of 428 m2/kg, which is beneficial for enhancing the adhesion between the filler and the asphalt. However, the higher SiO2 content and hydrophilic coefficient in CT may decrease the water resistance of the asphalt mixture. As the substitution rate of CT increases, the complex modulus of the asphalt mastic significantly increases, especially in the 75% substitution rate and 30% volume fraction CT condition, where the complex modulus increases by 39%-62%, and the phase angle decreases. This indicates that CT can enhance the high-temperature stability and deformation resistance of the asphalt mastic. The rutting resistance of the CT asphalt mixture is 5% higher than that of the LP asphalt mixture. The maximum bending tensile strain at low temperature decreases by 3.0×10-4. The freeze-thaw splitting test strength decreases by an average of 6.5%, but all meet the road performance requirements. Additionally, the leaching rates of heavy metals such as Cu and Ba in CT are far below the specification requirements, and the environmental risk is negligible. Therefore, considering both the road performance and environmental factors, CT can be a substitute for natural mineral fillers.7 tabs, 9 figs, 30 refs.

参考文献/References:

[1] 郭万进,吴明海,王 阳,等.我国铜矿尾矿资源化利用技术现状及进展[J].矿产综合利用,2023(5):127-134.
GUO Wan-jin, WU Ming-hai, WANG Yang, et al. Present situation and progress of resource utilization technology of copper tailings inChina[J]. Multipurpose Utilization of Mineral Resources, 2023(5): 127-134.
[2]ARUNACHALAM K P, AVUDAIAPPAN S, MAUREIRA N, et al. Innovative use of copper mine tailing as an additive in cement mortar[J]. Journal of Materials Research and Technology, 2023, 25: 2261-2274.
[3]VARGAS F, LOPEZ M, RIGAMONTI L. Environmental impacts evaluation of treated copper tailings as supplementary cementitious materials[J]. Resources, Conservation and Recycling, 2020, 160: 104890.
[4]CHEN C, LIU H, ZHANG Y, et al. Micro-assessment of heavy metal immobilization within alkali-activated copper tailings-slag geopolymer[J]. Cement and Concrete Composites, 2024, 149: 105510.
[5]AHMARI S, ZHANG L Y. Production of eco-friendly bricks from copper mine tailings through geopolymerization[J]. Construction and Building Materials, 2012, 29: 323-331.
[6]OLUWASOLA E A, HAININ M R, AZIZ M M A. Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction[J]. Transportation Geotechnics, 2015, 2: 47-55.
[7]CHOUDHARY J, KUMAR B, GUPTA A. Effect of filler on the bitumen-aggregate adhesion in asphalt mix[J]. International Journal of Pavement Engineering, 2020, 21(12): 1482-1490.
[8]CHOUDHARY J, KUMAR B, GUPTA A. Performance evaluation of asphalt concrete mixes having copper industry waste as filler[J]. Transportation Research Procedia, 2020, 48: 3656-3667.
[9]MOHD SHUKRY N A, ABDUL HASSAN N, ABDULLAH M E, et al. Influence of diatomite filler on rheological properties of porous asphalt mastic[J]. International Journal of Pavement Engineering, 2020, 21(4): 428-436.
[10]CHENG Y C, MA H L, HUANG J P, et al. Performances comparison of mine filler asphalt mortar and diatomite asphalt mortar[J]. Applied Mechanics and Materials, 2013, 361-363: 1861-1864.
[11]CHOUDHARY J, KUMAR B, GUPTA A. Application of waste materials as fillers in bituminous mixes[J]. Waste Management, 2018, 78: 417-425.
[12]SEGUI P, EL MAHDI SAFHI A, AMRANI M, et al. Mining wastes as road construction material: A review[J]. Minerals, 2023, 13(1): 90.
[13]吕 娜,李 笑,梁霄龙,等.3D打印铜尾矿砂混凝土的物理力学性能分析[J].金属矿山,2023(10): 253-258.
LYU Na, LI Xiao, LIANG Xiao-long, et al. Analysis of physical and mechanical properties of 3D printed copper tailings concrete[J]. Metal Mine, 2023(10): 253-258.
[14]CHEN Y, XU S B, TEBALDI G, et al. Role of mineral filler in asphalt mixture[J]. Road Materials and Pavement Design, 2022, 23(2): 247-286.
[15]裴建中,樊泽鹏,薛 斌,等.沥青路面材料的颗粒物质视域:理论、方法与进展[J].中国公路学报,2023,36(8): 121-136.
PEI Jian-zhong, FAN Ze-peng, XUE Bin, et al. Granular matter perspective of asphalt pavement materials: Theory, methodology and progress[J]. China Journal of Highway and Transport, 2023, 36(8): 121-136.
[16]XU W Y, QIU X, XIAO S L, et al. Molecular dynamic investigations on the adhesion behaviors of asphalt mastic-aggregate interface[J]. Materials, 2020, 13(22): 5061.
[17]ZHENG Y Q, CHEN S H, HUANG W K, et al. Principle analysis of the mix design and performance evaluation of the asphalt-filler volume equivalent substitution method[J]. Construction and Building Materials, 2023, 367: 130276.
[18]QIAN Z D, REN H S, WEI Y. Effect of aggregate gradation and morphology on porous asphalt mixture performance[J]. Journal of Materials in Civil Engineering, 2021, 33(5): 04021055.
[19]张吉哲,郭晨晨,苏春华,等.赤泥沥青混合料动态响应与水稳定性提升[J].长安大学学报(自然科学版),2021,41(5):11-22.
ZHANG Ji-zhe, GUO Chen-chen, SU Chun-hua, et al. Dynamic response and moisture stability improvement of red mud asphalt mixture[J]. Journal of Chang'an University(Natural Science Edition), 2021, 41(5): 11-22.
[20]LIU N, LIU L P, LI M C, et al. Effects of zeolite on rheological properties of asphalt materials and asphalt-filler interaction ability[J]. Construction and Building Materials, 2023, 382: 131300.
[21]刘 刚,陈磊磊,钱振东,等.车辙深度对沥青路面结构性能影响性分析[J].振动与冲击,2021,40(24):36-40.
LIU Gang, CHEN Lei-lei, QIAN Zhen-dong, et al. Influence of rutting depth on asphalt pavement structure performance[J]. Journal of Vibration and Shock, 2021, 40(24): 36-40.
[22]HOU J P, MA X Y, CHEN H X, et al. A comparison of indices used to evaluate asphalt-filler interactions[J]. Construction and Building Materials, 2022, 359: 129501.
[23]KUMLAI S, JITSANGIAM P, NIKRAZ H. Assessments of moisture damage resistance of asphalt concrete mixtures and asphalt mastic with various mineral fillers[J]. Transportation Engineering, 2022, 7: 100106.
[24]ZHENG D, QIAN Z D, LI P, et al. Performance evaluation of high-elasticity asphalt mixture containing inorganic nano-titanium dioxide for applications in high altitude regions[J]. Construction and Building Materials, 2019, 199: 594-600.
[25]FAHEEM A F, HINTZ C, BAHIA H U, et al. Influence of filler fractional voids on mastic and mixture performance[J]. Transportation Research Record, 2012, 2294(1): 74-80.
[26]陈 飞,张林艳,封基良,等.沥青混合料低温抗裂性能试验方法研究进展[J].材料导报,2021,35(增2):127-137.
CHEN Fei, ZHANG Lin-yan, FENG Ji-liang, et al. Research progress on test methods of asphalt mixture's low-temperature anti-cracking performance[J]. Materials Reports, 2021, 35(S2): 127-137.
[27]LEI B, LI X H, GUO Y P, et al. Recycling of copper tailing as filler material in asphalt paving mastic: A sustainable solution for mining waste recovery[J]. Case Studies in Construction Materials, 2024, 20: e03237.
[28]MENG Y J, LAI J, FAN L P, et al. Recycling of the waste battery: Effect of waste battery on property of asphalt and environmental impact evaluation[J]. Science of the Total Environment, 2023, 904: 166983.
[29]刘佳雯,李 辉,张恒基,等.粉末固废应用于透水沥青路面的浸出污染[J].长安大学学报(自然科学版),2022,42(3):71-78.
LIU Jia-wen, LI Hui, ZHANG Heng-ji, et al. Leachate pollution of porous asphalt pavement with fine solid waste fillers[J]. Journal of Chang'an University(Natural Science Edition), 2022, 42(3): 71-78.
[30]SUSANTO I, FRANSISCO S, FIRDAUS Y, et al. Utilization of tailing waste as aggregate for road pavement[J]. IOP Conference Series: Earth and Environmental Science, 2021, 802(1): 012020.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):1.

备注/Memo

备注/Memo:
收稿日期:2024-11-11
基金项目:国家重点研发计划项目(2018YFB1600304); 新疆维吾尔自治区自然科学基金项目(2021D01C117)
作者简介:钱振东(1969-),女,江苏南通人,教授,博士研究生导师,E-mail:qianzd@seu.edu.cn。
更新日期/Last Update: 2025-05-30