[1]王朝辉,卢强,王帅,等.用于道路自供能监测的微变形放大型压电装置设计与测试[J].长安大学学报(自然科学版),2025,45(3):1-16.[doi:10.19721/j.cnki.1671-8879.2025.03.001]
 WANG Chao-hui,LU Qiang,WANG Shuai,et al.Design and testing on micro-deformation amplified piezoelectric device for road self-powered monitoring[J].Journal of Chang’an University (Natural Science Edition),2025,45(3):1-16.[doi:10.19721/j.cnki.1671-8879.2025.03.001]
点击复制

用于道路自供能监测的微变形放大型压电装置设计与测试()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年3期
页码:
1-16
栏目:
道路工程
出版日期:
2025-05-31

文章信息/Info

Title:
Design and testing on micro-deformation amplified piezoelectric device for road self-powered monitoring
文章编号:
1671-8879(2025)03-0001-16
作者:
王朝辉1卢强1王帅12陈逸文13贾小东1
(1. 长安大学 公路学院,陕西 西安 710064; 2. 鲁东大学 水利土木学院,山东 烟台 264025; 3. 长安大学 未来交通学院,陕西 西安 710064)
Author(s):
WANG Chao-hui1 LU Qiang1 WANG Shuai12 CHEN Yi-wen13 JIA Xiao-dong1
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. School of Hydraulic and Civil Engineering, Ludong University, Yantai 264025, Shandong, China; 3. School of Future Transportation, Chang'an University, Xi'an 710064, Shaanxi, China)
关键词:
道路工程 悬臂梁式压电装置 能量收集 微变形放大 监测 设计
Keywords:
road engineering cantilever beam piezoelectric device energy harvesting micro-deformation amplification monitoring design
分类号:
U416
DOI:
10.19721/j.cnki.1671-8879.2025.03.001
文献标志码:
A
摘要:
针对路面微变形与悬臂梁式压电换能器激励位移不匹配、压电装置平面尺寸与道路交通碾压适应性低的问题,设计了可放大内部行程、碾压适应性高的悬臂梁式压电装置。基于偏压工况分析了不同横向尺寸盖板的下沉特性,确定了偏压工况中盖板稳定下沉的横向尺寸,结合全压工况盖板应力分布及翘曲变形特性,优选了盖板屈曲稳定性高的纵向尺寸; 考虑道路变形及车辆碾压频率特性,系统研究了不同加载条件下压电装置的能量输出效果和工作耐久性,并提出了基于该压电装置的自供能型道路传感器监测应用方案。研究结果表明:增加横向尺寸有利于提升装置盖板在车轮偏压时的下沉稳定性,车轮偏压点位超过盖板的3/8时,盖板已完全下沉,盖板横向尺寸为180 mm时盖板与侧板间距相比其他横向尺寸下的离散性更小,盖板侧边下沉平稳; 全压工况下,盖板纵横比为0.9~1.1时,盖板角隅区和侧中区的翘曲变形及翘曲应力较小,屈曲稳定性较高; 结合不同碾压工况下盖板的力学特性,承载性能稳定的装置平面尺寸为180 mm×180 mm; 当激励位移为0.7 mm,激励频率为12 Hz时,压电装置单次作动可稳定输出14 mJ的能量,经10万次循环加载的压电装置输出能量变化率不及1%,电学输出耐久性能良好,布设4个所开发的压电装置即可满足道路传感器监测用电需求。
Abstract:
To address the issues of mismatch between pavement micro-deformation and excitation displacement of cantilever beam piezoelectric transducer, as well as the low adaptability of planar dimensions of piezoelectric device to road traffic rolling, a cantilever beam piezoelectric device with amplified internal stroke and high rolling adaptability was designed. Based on the deviation rolling condition, the sinking characteristics of cover plates with different lateral sizes were analyzed, and the lateral size for the cover plate's stable sinking under the deviation rolling condition was determined. Combining with the stress distribution and warping deformation characteristics of the cover plate under the complete rolling condition, the longitudinal size with high buckling stability of the cover plate was optimized. Considering the road deformation and the frequency characteristics of vehicle rolling, the energy output performance and operational durability of the piezoelectric device under different loading conditions were systematically investigated, and the monitoring application scheme of self-powered road sensor based on this piezoelectric device was proposed. The research results indicate that the increase in the lateral size is beneficial to improve the sinking stability of the device cover plate when the wheel is biased. The cover plate completely sinks when the point at which the wheel deviates from the rolling path exceeds 3/8 of the cover plate. With a lateral size of 180 mm for the cover plate, the spacing between cover plate and side plate has less discreteness compared with other lateral sizes, and the side of the cover plate sinks smoothly. Under the complete rolling condition, when the aspect ratio of the cover plate is 0.9-1.1, the warping deformation and warping stress at corner and middle area on sides of the cover plate are relatively small, and the buckling stability is relatively high. Combining with the mechanical properties of the cover plate under different rolling conditions, the planar size of the device with stable bearing performance is 180 mm×180 mm. The piezoelectric device can stably output 14 mJ of energy per actuation when the excitation displacement is 0.7 mm, and the excitation frequency is 12 Hz. After 100 000 loading cycles, the change rate of the energy output by the piezoelectric device is less than 1%, indicating excellent durability in electrical output performance. Deploying four developed piezoelectric devices suffices to meet the power demand for road sensor monitoring.1 tab, 15 figs, 33 refs.

参考文献/References:

[1] CHEN J Q, DAN H C, DING Y J, et al. New innovations in pavement materials and engineering: A review on pavement engineering research 2021[J]. Journal of Traffic and Transportation Engineering(English Edition), 2021, 8(6): 815-999.
[2]ZHANG L, KAN J W, LIN S J, et al. Design and performance evaluation of a pendulous piezoelectric rotational energy harvester through magnetic plucking of a fan-shaped hanging composite plate[J]. Renewable Energy, 2024, 222: 119796.
[3]LIN S, YANG Z M, ZHANG L, et al. Design, fabrication,and characterization of a deformation-restricted piezoelectric vibration energy harvester triggered by a stopper[J]. Energy, 2024, 312: 133550.
[4]《中国公路学报》编辑部.中国路面工程学术研究综述·2024[J].中国公路学报,2024,37(3):1-81.
Editorial Department of China Journal of Highway and Transport.Review on China's pavement engineering research: 2024[J]. China Journal of Highway and Transport, 2024, 37(3): 1-81.
[5]WANG S, WANG C H, GAO Z W, et al. Design and performance of a cantilever piezoelectric power generation device for real-time road safety warnings[J]. Applied Energy, 2020, 276: 115512.
[6]GIBUS D, MOREL A, GASNIER P, et al. High performance piezoelectric vibration energy harvesting by electrical resonant frequency tuning[J]. Smart Materials and Structures, 2022, 31(12): 125012.
[7]WANG C H, ZHOU R L, WANG S, et al. Structure optimization and performance of piezoelectric energy harvester for improving road power generation effect[J]. Energy, 2023, 270: 126896.
[8]WANG S, WANG C H, YU G X, et al. Development and performance of a piezoelectric energy conversion structure applied in pavement[J]. Energy Conversion and Management, 2020, 207: 112571.
[9]WANG P, PAN J Y, ZHANG H F, et al. Optimal road piezoelectric energy harvester design based on a free-end simply supported beam structure[J]. Journal of Vibration Engineering and Technologies, 2022, 10(6): 2061-2071.
[10]李 辉,许龙舟,毛 鹏,等.悬臂梁压电俘能器结构设计与电学性能有限元分析[J].长安大学学报(自然科学版),2023,43(6):25-36.
LI Hui, XU Long-zhou, MAO Peng, et al. Structural design and electrical properties of cantilever beam piezoelectric energy harvester by finite element analysis[J]. Journal of Chang'an University(Natural Science Edition), 2023, 43(6): 25-36.
[11]KHAZAEE M, HUBER J E, ROSENDAHL L, et al. Four-point bending piezoelectric energy harvester with uniform surface strain toward better energy conversion performance and material usage[J]. Journal of Sound and Vibration, 2023, 548: 117492.
[12]HASANI M, KHAZAEE M, HUBER J E, et al. Design and analytical evaluation of an impact-based four-point bending configuration for piezoelectric energy harvesting[J]. Applied Energy, 2023, 347: 121461.
[13]RAMEGOWDA P C, ISHIHARA D. Accurate finite element modeling of multilayered flexible piezoelectric energy harvesting devices with strong coupling of structure,piezoelectricity, and circuit[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2024, 25(3): 137-151.
[14]SHIN Y H, JUNG I, NOH M S, et al. Piezoelectric polymer-based roadway energy harvesting via displacement amplification module[J]. Applied Energy, 2018, 216: 741-750.
[15]JEON D H, CHO J Y, JHUN J P, et al. A lever-type piezoelectric energy harvester with deformation-guiding mechanism for electric vehicle charging station on smart road[J]. Energy, 2021, 218: 119540.
[16]王朝辉,王 帅,宋 志,等.基于现场测试的道路压电俘能系统电学性能[J].中国公路学报,2021,34(1):12-23.
WANG Chao-hui, WANG Shuai, SONG Zhi, et al. Electrical performance of road piezoelectric energy-harvesting system based on field test[J]. China Journal of Highway and Transport, 2021, 34(1): 12-23.
[17]DU C, LIU P, YANG H, et al. Finite element modeling and performance evaluation of piezoelectric energy harvesters with various piezoelectric unit distributions[J]. Materials, 2021, 14(6): 1405.
[18]WANG S, WANG C H, YUAN H Z, et al. Design and performance of piezoelectric energy output promotion system for road[J]. Renewable Energy, 2022, 197: 443-451.
[19]WANG C H, CAO H Y, WANG S, et al. Design and testing of road piezoelectric power generation device based on traffic environment applicability[J]. Applied Energy, 2021, 299: 117344.
[20]WANG J, LIU Z M, DING G Y, et al. Watt-level road-compatible piezoelectric energy harvester for LED-induced lamp system[J]. Energy, 2021, 229: 120685.
[21]CHEN C, XU T B, YAZDANI A, et al. A high density piezoelectric energy harvesting device from highway traffic-System design and road test[J]. Applied Energy, 2021, 299: 117331.
[22]汪红兵,孙春华.路面能量采集的多悬臂梁压电俘能器仿真分析[J].公路,2016,61(4):143-148.
WANG Hong-bing, SUN Chun-hua. Simulation on a piezoelectric energy harvester of multiple cantilevers for harvesting vibration energy from pavement[J]. Highway, 2016, 61(4): 143-148.
[23]JUNG I, SHIN Y H, KIM S, et al. Flexible piezoelectric polymer-based energy harvesting system for roadway applications[J]. Applied Energy, 2017, 197: 222-229.
[24]CHEN N, JUNG H J, JABBAR H, et al. A piezoelectric impact-induced vibration cantilever energy harvester from speed bump with a low-power power management circuit[J]. Sensors and Actuators A: Physical, 2017, 254: 134-144.
[25]JASIM A, YESNER G, WANG H, et al. Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications[J]. Applied Energy, 2018, 224: 438-447.
[26]SONG G J, CHO J Y, KIM K B, et al. Development of a pavement block piezoelectric energy harvester for self-powered walkway applications[J]. Applied Energy, 2019, 256: 113916.
[27]ISARAKORN D, JAYASVASTI S, PANTHONGSY P, et al. Design and evaluation of double-stage energy harvesting floor tile[J]. Sustainability, 2019, 11(20): 5582.
[28]HONG S D, KIM K B, HWANG W, et al. Enhanced energy-generation performance of a landfilled road-capable piezoelectric harvester to scavenge energy from passing vehicles[J]. Energy Conversion and Management, 2020, 215: 112900.
[29]WANG J, LIU Z M, SHI K X, et al. Development and application performance of road spring-type piezoelectric transducer for energy harvesting[J]. Smart Materials and Structures, 2021, 30(8): 085020.
[30]PHAM T H, BUI T D, DAO T T. A high-reliability piezoelectric tile transducer for converting bridge vibration to electrical energy for smart transportation[J]. Micromachines, 2023, 14(5): 1058.
[31]WANG C H, WANG S, GAO Z W, et al. Effect evaluation of road piezoelectric micro-energy collection-storage system based on laboratory and on-site tests[J]. Applied Energy, 2021, 287: 116581.
[32]ANGHELACHE G, MOISESCU R, SOROHAN S, et al. Measuring system for investigation of tri-axial stress distribution across the tyre-road contact patch[J]. Measurement, 2011, 44(3): 559-568.
[33]TAGHAVIFAR H, MARDANI A. Potential of functional image processing technique for the measurements of contact area and contact pressure of a radial ply tire in a soil bin testing facility[J]. Measurement, 2013, 46(10): 4038-4044.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):1.

备注/Memo

备注/Memo:
收稿日期:2024-11-20
基金项目:中央高校基本科研业务费专项资金项目(300102214908); 陕西省创新能力支撑计划项目(2022TD-07); 山东省自然科学基金项目(ZR2024QE058)
作者简介:王朝辉(1980-),男,河南滑县人,教授,博士研究生导师,E-mail:wchh0205@163.com。
更新日期/Last Update: 2025-05-30