[1] 王凌波,王秋玲,朱 钊,等.桥梁健康监测技术研究现状及展望[J].中国公路学报,2021,34(12):25-45.
WANG Ling-bo, WANG Qiu-Ling, ZHU Zao, et al. Current statusand prospects of research on bridge health monitoring technology[J]. China Journal of Highway and Transport, 2021, 34(12): 25-45.
[2]赵一男,公茂盛,杨 游.结构损伤识别方法研究综述[J].世界地震工程,2020,36(2):73-84.
ZHAO Yi-nan, GONG Mao-sheng, YANG You. A reviewof structure damage identification methods[J]. World Earthquake Engineering, 2020, 36(2): 73-84.
[3]FENG D M, MARIA Q F. Computer vision forSHM of civil infrastructure: From dynamic responsemeasurement to damage detection-A review[J].Engineering Structures, 2018, 156: 105-117.
[4]孙利民,尚志强,夏 烨.大数据背景下的桥梁结构健康监测研究现状与展望[J].中国公路学报,2019,32(11):1-20.
SHUN Li-min, SHANG Zhi-qiang, XIA Ye. Developmentand prospect of bridge structural health monitoring in thecontext of big data[J]. China Journal of Highway andTransport, 2019, 32(11): 1-20.
[5]PANDEY A K, BISWAS M. Damage detection in structuresusing changes in flexibility[J]. Journal of Sound and Vibration, 1994, 169(1): 3-17.
[6]LI J, WU B, ZENG Q C, et al. A generalized flexibilitymatrix based approach for structural damage detection[J]. Journal of Sound and Vibration, 2010, 329(22): 4583-4587.
[7]PENG X, YANG Q W. Sensor placement and structuraldamage evaluation by improved generalized flexibility[J]. IEEE Sensors Journal, 2021, 21(10): 11654-11664.
[8]LIU H, LI Z. An improved generalized flexibility matrixapproach for structural damage detection[J]. Inverse Problems in Science and Engineering, 2020, 28(6): 877-893.
[9]李国庆,罗 帅,苏 睿,等.环境激励下基于柔度矩阵分解的损伤诊断[J].应用数学和力学,2021,42(3):292-298.
LI Guo-qing, LUO Shuai, SU Rui, et al. Research ondamage diagnosis based on flexibility matrixdecomposition[J]. Applied Mathematics and Mechanics,2021, 42(3): 292-298.
[10]DUAN Z, YAN G, OU J, et al. Damage localization inambient vibration by constructing proportional flexibilitymatrix[J]. Journal of Sound and Vibration, 2005, 284(1-2):455-466.
[11]李子奇,蒋柱虎,王 力,等.基于深度学习的工程结构损伤识别研究进展[J].中国安全生产科学技术,2022,18(12):43-48.
LI Zi-qi, JIANG Zhu-hu, WANG Li, et al. Researchprogress in damage identification of engineeringstructure based on deep learning[J]. Journal of SafetyScience and Technology, 2022, 18(12): 43-48.
[12]朱劲松,李 欢,王世芳.基于卷积神经网络和迁移学习的钢桥病害识别[J].长安大学学报(自然科学版),2021,41(3):52-63.
ZHU Jing-song, LI Huan, WANG Shi-fang. Defectrecognition for steel bridge based on convolutional neuralnetwork and transfer learning[J]. Journal of Chang'anUniversity(Natural Science Edition), 2021, 41(3): 52-63.
[13]乔 朋,梁志强,徐 凯,等.基于机器学习的中小跨径桥梁技术状况评估[J].长安大学学报(自然科学版),2021,41(6):39-52.
QIAO Peng, LIANG Zhi-qiang, XU Kai, et al. Evaluationof technical condition of medium and small span bridgebased on machine learning[J]. Journal of Chang'anUniversity(Natural Science Edition), 2021, 41(6): 39-52.
[14]李禹剑,李 剑,辛伟瑶.一种基于BP神经网络的老旧桥梁健康诊断方法[J].国外电子测量技术,2020,39(2):19-22.
LI Yu-jian, LI Jian, XIN Wei-yao. Health diagnosismethod for old bridges based on BP neural network[J]. Electronic Measurement Technology, 2020, 39(2): 19-22.
[15]TANG Z, CHEN Z, BAO Y, et al. Convolutional neuralnetwork-based data anomaly detection method usingmultiple information for structural health monitoring[J].Structural Control and Health Monitoring, 2019, 26(1): e2296.
[16]张博耀.基于LSTM网络的某斜拉桥地震响应建模方法研究[D].哈尔滨:哈尔滨工业大学,2021.
ZHANG Bo-yao. Research on seismic response modelingmethod of a cable-stayed bridge based on LSTMnetwork[D]. Harbin: Harbin Institute of Technology, 2021.
[17]王子凡,张健飞.一种基于LSTM循环神经网络和振动测试的结构损伤检测方法[J].噪声与振动控制,2021,41(5):127-133.
WANG Zi-fan, ZHANG Jian-fei. A structural damagedetection method based on LSTM recurrent neutralnetwork and vibration testing[J]. Noise and Vibration Control, 2021, 41(5): 127-133.
[18]单德山,石 磊,谭康熹.联合卷积神经网络与长短期记忆深度网络的桥梁损伤识别[J].桥梁建设,2023,53(4):41-46.
SHAN De-shan, SHI Lei, TAN Kang-xi. Bridge damageidentification based on joint CNN and LSTM deepnetwork[J]. Bridge Construction, 2023, 53(4): 41-46.
[19]LIU S, YANG Y, FORREST J. Grey data analysis[M]. Singapore: Springer Singapore, 2017.
[20]ABDOLLAHZADEH B, SOLEIMANIAN G F, MIRJALILI S. Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems[J]. International Journal of Intelligent Systems, 2021, 36(10): 5887-5958.
[21]杨秋伟,王学航,李翠红.基于高次广义柔度灵敏度的结构损伤识别[J].固体力学学报,2019,40(2):157-168.
YANG Qiu-wei, WANG Xue-hang, LI Cui-hong. Damage identification of engineering structure based onhigh-order generalized flexibility sensitivity[J]. ChineseJournal of Solid Mechanics, 2019, 40(2): 157-168.
[22]段忠东,闫桂荣,欧进萍,等.结构比例柔度矩阵[J].哈尔滨工业大学学报,2006(8):1236-1238,1242.
DUAN Zhong-dong, YAN Gui-rong, OU Jin-ping, et al. Proportional flexibility matrix of structures[J]. Journal ofHarBin Institute of Technology, 2006(8): 1236-1238, 1242.
[23]邓聚龙.灰色系统基本方法[M].4版.武汉:华中理工大学出版社,1996.
DENG Ju-long. Basic method of grey system[M]. 4th ed.Wuhan: Huazhong University of Technology Press, 1996.
[24]邱锡鹏.神经网络与深度学习[M].北京:机械工业出版社,2021.
QIU Xi-peng. Neural networks and deep learning[M]. Beijing: Mechanical Industry Press, 2021.
[25]杨 铄,许清风,王卓琳.基于卷积神经网络的结构损伤识别研究进展[J].建筑科学与工程学报,2022,39(4):38-57.
YANG Shuo, XU Qing-feng, WANG Zuo-lin. Researchprogress on structure damage detection based on convolutional neural networks[J]. Journal of Architecture and Civil Engineering, 2022, 39(4): 38-57.
[26]魏佳恒,郭惠勇.基于贝叶斯优化BiLSTM模型的输电塔损伤识别[J].振动与冲击,2023,42(1):238-248.
WEI Jia-heng, GUO Hui-yong. Damage identification oftransmission tower based on BO-BiLSTM model[J]. Journal of Vibration and Shock, 2023, 42(1): 238-248.
[27]FU T C, BOGY D B. Dynamic load head-diskinterface durability of 50 percent sliders and polisheddisks[J]. IEEE Transactions on Magnetics, 1996, 32(5): 3747-3749.
[28]曹 晖,林秀萍.结构损伤识别中噪声的模拟[J].振动与冲击,2010,29(5):106-109,243-244.
CAO Hui, LIN Xiu-ping. Simulation of noise instructural damage identification[J]. Journal of Vibrationand Shock, 2010, 29(5): 106-109, 243-244.