|Table of Contents|

Performance evolution law and gradation recommendation of porous asphalt concrete under freeze-thaw action(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2025年03期
Page:
39-51
Research Field:
道路工程
Publishing date:

Info

Title:
Performance evolution law and gradation recommendation of porous asphalt concrete under freeze-thaw action
Author(s):
SI Wei1 LUO Xiang-yu1 PANG Guang-wei1 PU Chao2 WANG Hua-tao2 WANG Bin2YANG Ruo-cong3 LIU Jie2
(1. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University,Xi'an 710064, Shaanxi, China; 2. Xinjiang Key Laboratory for Safety and Health of Transportation Infrastructure in Alpine and High-Altitude Mountainous Areas, Xinjiang Transportation Planning,Survey and Design Institute Co., Ltd., Urumqi 830006, Xinjiang, China; 3. CCCC Civil Engineering Science and Technology Co., Ltd., Xi'an 710075, Shaanxi, China)
Keywords:
road engineering porous asphalt concrete freeze-thaw cycle void structure mechanical property
PACS:
U416.2
DOI:
10.19721/j.cnki.1671-8879.2025.03.004
Abstract:
To investigate the effects of freeze-thaw action on the structure, performance and service life of porous asphalt concrete(PAC), and to recommend suitable gradation types and optimal void contents of PAC in cold regions, the X-ray computed tomography(CT)and digital image processing(DIP)technology were employed to extract the three-dimensional void network of PAC and quantify its structural parameters. Low-temperature splitting tests, uniaxial compression tests, and indirect tensile fatigue tests were conducted to study the evolution laws of void structure parameters, low-temperature splitting strength, uniaxial compressive strength, and fatigue life of PAC under freeze-thaw action. Based on the evolutions of void structure and concrete performance, a mix proportion optimization method based on multi-criteria decision analysis theory was established for PAC in cold regions. The research results reveal that during the process of 0-12 freeze-thaw cycles, the internal void content of PAC increases rapidly, mainly due to the interconnected expansion among voids. After 12 freeze-thaw cycles, the further generation of small voids becomes the primary mechanism for the increase in the void content. Therefore, the freeze-thaw cycle is divided into early stage as 0-12 freeze-thaw cycle action and later stage as 13-20 freeze-thaw cycle action. During the freeze-thaw cycle process, the voids larger than 10 mm2 gradually increase in proportion at the early stage and then slowly decrease at the later stage, whereas the voids smaller than 10 mm2 exhibit the opposite trend. The attenuations in the low-temperature splitting strength, uniaxial compressive strength and fatigue life of PAC are closely related to the nominal maximum aggregate size and void content. Under non-freeze-thaw condition, void content has a more pronounced effect on the low-temperature splitting strength, while under freeze-thaw condition, the nominal maximum aggregate size has more significant impact on the low-temperature splitting strength, uniaxial compressive strength and fatigue life. The PAC-13b gradation characterized by a smaller nominal maximum aggregate size and a void content within 21%-22% exhibits the best performance against freeze-thaw damage.5 tabs, 10 figs, 30 refs.

References:

[1] 丁庆军,沈 凡,刘新权,等.透水型沥青路面材料的降噪性能[J].长安大学学报(自然科学版),2010,30(2):24-28.
DING Qing-jun, SHEN Fan, LIU Xin-quan, et al. Noise-damping performance of draining asphalt pavement[J]. Journal of Chang'an University(Natural Science Edition), 2010, 30(2): 24-28.
[2]李明亮,华 夏,肖 月,等.材料设计参数对双层多孔路面吸声性能影响[J].长安大学学报(自然科学版),2023,43(1):10-17.
LI Ming-liang, HUA Xia, XIAO Yue, et al. Influence of material design parameters on noise reduction performance of two-layer porous pavement[J]. Journal of Chang'an University(Natural Science Edition), 2023, 43(1): 10-17.
[3]MORIYOSHI A, JIN T, NAKAI T, et al. Construction and pavement properties after seven years in porous asphalt with long life[J]. Construction and Building Materials, 2014, 50: 401-413.
[4]何 亮,周子栋,VAN DEN BERGH Wim,等.多孔沥青混合料堵塞规律离散元仿真[J].交通运输工程学报,2023,23(2):78-91.
HE Liang, ZHOU Zi-dong, VAN DEN BERGH W, et al. Discrete element simulation of porous asphalt mixture clogging law[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 78-91.
[5]周 韡,黄晓明,梁彦龙,等.多孔沥青路面渗水性能衰变规律[J].长安大学学报(自然科学版)),2016,36(1):21-27.
ZHOU Wei, HUANG Xiao-ming, LIANG Yan-long, et al. Permeability performance decay law of porous asphalt pavement[J]. Journal of Chang'an University(Natural Science Edition), 2016, 36(1): 21-7.
[6]李明亮,袁春坤,李 俊,等.车辙变形对多孔沥青路面排水性能的影响[J].长安大学学报(自然科学版),2020,40(1):107-115.
LI Ming-liang, YUAN Chun-kun, LI Jun, et al. Effect of rutting deformation on drainage performance for porous asphalt pavement[J]. Journal of Chang'an University(Natural Science Edition), 2020, 40(1): 107-115.
[7]WANG Y Q, SUN Q S, LENG S B, et al. Effect of dry-wet cycles on mechanical properties of polyurethane porous mixture[J]. International Journal of Pavement Engineering, 2023, 24(1): 2212315.
[8]刘志杨,董泽蛟,周 涛,等.基于材料信息学的沥青混合料性能提升综述及展望[J].中国公路学报,2024,37(4):98-120.
LIU Zhi-yang, DONG Ze-jiao, ZHOU Tao, et al. Review and prospects of performance enhancement of asphalt mixtures based on material informatics[J]. China Journal of Highway and Transport, 2024, 37(4): 98-120.
[9]JIANG W, SHA A M, XIAO J J. Experimental study on relationships among composition, microscopic void features, and performance of porous asphalt concrete[J]. Journal of Materials in Civil Engineering, 2015, 27(11): 04015028.
[10]罗 凯,张云霞,邓娟华,等.空隙特征对排水路面残留饱水度的影响[J].公路,2021,66(8):49-55.
LUO Kai, ZHANG Yun-xia, DENG Juan-hua, et al. Influence of void characteristics on residual water saturation of draining pavement[J]. Highway, 2021, 66(8): 49-55.
[11]关 泊,陈治君,郝培文.排水性沥青混合料体积参数变化规律及矿料间隙率预估方法[J]. 长安大学学报(自然科学版),2017,37(6):9-16.
GUAN Bo, CHEN Zhi-jun, HAO Pei-wen. Change law of volume parameters and predictive method of VMA of porous asphalt mixture[J]. Journal of Chang'an University(Natural Science Edition), 2017, 37(6): 9-16.
[12]李金凤,何兆益,官志桃.多孔沥青混合料矿料间隙率物理模型的构建[J]. 哈尔滨工业大学学报,2022,54(3):139-147.
LI Jin-feng, HE Zhao-yi, GUAN Zhi-tao. Physical model for void ratio in mineral aggregates of porous asphalt concrete[J]. Journal of Harbin Institute of Technology, 2022, 54(3): 139-147.
[13]CHEN M J, WONG Y D. Evaluation of the development of aggregate packing in porous asphalt mixture using discrete element method simulation[J]. Road Materials and Pavement Design, 2017, 18(1): 64-85.
[14]XU L, ZHANG Y, ZHANG Z S, et al. Optimization design of rubberized porous asphalt mixture based on noise reduction and pavement performance[J]. Construction and Building Materials, 2023, 389: 131551.
[15]司 伟,张博文,杨若聪,等.青藏高寒区基于真实环境冻融作用的沥青混合料冻融疲劳破坏表征[J].长安大学学报(自然科学版),2023,43(3):11-21.
SI Wei, ZHANG Bo-wen, YANG Ruo-cong, et al. Characterization analysis of freezing-thawing fatigue failure of asphalt mixture under freeze-thaw action in real environment in Qinghai-Tibet Plateau cold regions[J]. Journal of Chang'an University(Natural Science Edition), 2023, 43(3): 11-21.
[16]罗 蓉,柳子尧,黄婷婷,等.冻融循环对沥青混合料内水气扩散的影响[J].中国公路学报,2018,31(9):20-26,64.
LUO Rong, LIU Zi-yao, HUANG Ting-ting, et al. Effect of freezing-thawing cycles on water vapor diffusion in asphalt mixtures[J]. China Journal of Highway and Transport, 2018, 31(9): 20-26, 64.
[17]郭寅川,申爱琴,何天钦,等.疲劳荷载和冻融循环耦合作用下路面混凝土微裂缝扩展行为[J].交通运输工程学报,2016,16(5):1-9.
GUO Yin-chuan, SHEN Ai-qin, HE Tian-qin, et al. Micro-crack propagation behavior of pavement concrete subjected to coupling effect of fatigue load and freezing thawing cycles[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 1-9.
[18]孙斌祥,姜 奕,沈 航,等.改性多孔沥青混合料水稳定性与损伤规律[J].工程科学与技术,2022,54(3):120-130.
SUN Bin-xiang, JIANG Yi, SHEN Hang, et al. Moisture stability and damage law of modified porous asphalt mixture[J]. Advanced Engineering Sciences, 2022, 54(3): 120-130.
[19]党志荣,念腾飞,刘宗成,等.冻融循环-动水冲刷对间断级配沥青混合料特性参数影响[J].兰州理工大学学报,2022,48(4):132-137.
DANG Zhi-rong, NIAN Teng-fei, LIU Zong-cheng, et al. Influence of freeze-thaw cycles-dynamic water scouring cycles on the characteristic parameters of intermittently graded asphalt mixture[J]. Journal of Lanzhou University of Technology, 2022, 48(4): 132-137.
[20]王 英,杨 熙,姜继斌,等.动水冲刷作用下季冻区沥青混合料水损害发展的细观过程[J].材料导报,2022,36(10):50-56.
WANG Ying, YANG Xi, JIANG Ji-bin, et al. The micro process of water damage in asphalt mixture in seasonal frozen area under the dynamic water erosion[J]. Materials Reports, 2022, 36(10): 50-56.
[21]QIAN N G, WANG D Y, LI D N, et al. Three-dimensional mesoscopic permeability of porous asphalt mixture[J]. Construction and Building Materials, 2020, 236: 117430.
[22]GAO L, WANG Z Q, XIE J G, et al. Study on the sound absorption coefficient model for porous asphalt pavements based on a CT scanning technique[J]. Construction and Building Materials, 2020, 230: 117019.
[23]LING S L, SUN Y, SUN D Q, et al. Pore characteristics and permeability simulation of porous asphalt mixture in pouring semi-flexible pavement[J]. Construction and Building Materials, 2022, 330: 127253.
[24]GARCIA A, ABOUFOUL M, ASAMOAH F, et al. Study the influence of the air void topology on porous asphalt clogging[J]. Construction and Building Materials, 2019, 227: 116791.
[25]陈 俊,姚 成,周若愚,等.多孔沥青混合料渗水性能的方向差异性及其受孔隙结构的影响[J].东南大学学报(自然科学版),2018,48(5):920-926.
CHEN Jun, YAO Cheng, ZHOU Ruo-yu, et al. Directional difference of water permeability of porous asphalt mixture and influence of pore structure[J]. Journal of Southeast University(Natural Science Edition), 2018, 48(5): 920-926.
[26]陈 俊,孙振浩,李嘉浩,等.基于声传播模拟的多孔沥青混合料吸声性能与孔结构关系[J]. 重庆交通大学学报(自然科学版),2023,42(8):38-44.
CHEN Jun, SUN Zhen-hao, LI Jia-hao, et al. Relationship between sound absorption performance and pore structure of porous asphalt mixture based on sound transmission simulation[J]. Journal of Chongqing Jiaotong University(Natural Science), 2023, 42(8): 38-44.
[27]张铭铭,郝培文.排水性沥青混合料体积参数特性[J].长安大学学报(自然科学版),2011,31(6):6-10.
ZHANG Ming-ming, HAO Pei-wen. Study on volumetric parameters in porous asphalt mixture[J]. Journal of Chang'an University(Natural Science Edition), 2011, 31(6): 6-10.
[28]CAO W, MOHAMMAD L N, BARGHABANY P, et al. Relationship between laboratory and full-scale fatigue performance of asphalt mixtures containing recycled materials[J]. Materials and Structures, 2019, 52(1): 26.
[29]晏雨婵,白 璘,武奇生,等.基于多指标模糊综合评价的交通拥堵预测与评估[J].计算机应用研究,2019,36(12):3697-3700,3704.
YAN Yu-chan, BAI Lin, WU Qi-sheng, et al. Traffic congestion prediction and assessment based on multi-index fuzzy comprehensive evaluation[J]. Application Research of Computers, 2019, 36(12): 3697-3700, 3704.
[30]徐士伟,苏业辉,李慧文,等.基于熵权法的枢纽内公交站场布局评价研究[J].交通运输系统工程与信息,2023,23(5):104-112.
XU Shi-wei, SU Ye-hui, LI Hui-wen, et al. Evaluation of bus station layouts in transportation hub based on entropy weight method[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(5): 104-112.

Memo

Memo:
-
Last Update: 2025-05-30