|Table of Contents|

Key technologies of highway self-consistent energy system planning(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2024年5期
Page:
1-13
Research Field:
交通能源融合技术专题
Publishing date:

Info

Title:
Key technologies of highway self-consistent energy system planning
Author(s):
ZHAO Li-sha1 HU Li-qun1 YUAN Min-min2 HAN Zhen-qiang1HAN Yong-tu1 HUANG Hong-xin1
(1. School of Highway, Chang'an University, Xi'an 71064, Shaanxi, China; 2. Research Institute of Highway Ministry of Transport, Beijing 100088, China)
Keywords:
road engineering self-consistent energy system clean energy system planning and design key technology
PACS:
U417
DOI:
10.19721/j.cnki.1671-8879.2024.05.001
Abstract:
In order to meet the increase demand of efficient utilization of clean energy for transportation, a self-consistent energy system for expressway was established. The components of highway self-consistent energy system, power source, grid, load and energy storage were analyzed, and the architecture based on the components was proposed. According to the geographical location of the system, grid level, natural resources, load level and local policies, the operation strategy of the highway self-consistent energy system can be divided into four modes, full grid connection, self-use and surplus power online, self-use and surplus power storage, off-grid operation. Then the general path of the highway self-consistent energy system planning in different modes was proposed. Furthermore, four key issues in the highway self-consistent energy system planning were discussed, including the evaluation of supply potential based on natural resources, the forecast of highway energy load, the selection of energy storage mode and capacity allocation, the operation efficiency evaluation of system. The results show that reasonable planning of highway self-consistent energy system not only promotes the integration of electric energy and green transportation, but also reduces the traffic operating cost and improves the utilization rate of clean energy.7 tabs, 14 figs, 37 refs.

References:

[1] 贾利民,程 鹏,张 蜇,等.“双碳”目标下轨道交通与能源融合发展路径和策略研究[J].中国工程科学,2022,24(3):173-183.
JIA Li-min,CHENG Peng,ZHANG Zhe,et al.Integrated development of rail transit and energies in China:Development paths and strategies[J].Strategic Study of CAE,2022,24(3):173-183.
[2]《中国公路学报》编辑部.中国路面工程学术研究综述·2024[J].中国公路学报,2024,37(3):1-81.
Editorial Department of China Journal of Highway and Transport.Review on China's pavement engineering research:2024[J].China Journal of Highway and Transport,2024,37(3):1-81.
[3]贾利民,师瑞峰,吉 莉,等.我国道路交通与能源融合发展战略研究[J].中国工程科学,2022,24(3):163-172.
JIA Li-min,SHI Rui-feng,JI Li,et al.Road transportation and energy integration strategy in China[J].Strategic Study of CAE,2022,24(3):163-172.
[4]苏小玲,陈来军,赵超凡,等.计及能源自洽率和共享氢储能的电-氢-交通耦合配电网低碳经济运行[J].高电压技术,2024,50(6),2424-2432.
SU Xiao-ling,CHEN Lai-jun,ZAHO Chao-fan,et al.Low carbon economic dispatch for electricity hydrogen transport coupling network considering self-sufficiency and shared hydrogen storage[J].High Voltage Engineering,2024,50(6),2424-2432.
[5]张 丽,林 垚,孙逸帆,等.基于专利计量的公路领域太阳能光伏应用技术发展分析[J].交通运输研究,2022,8(6):108-119.
ZHANG Li,LIN Yao,SUN Yi-fan.Development analysis of solar photovoltaic application technology in road field based on patentometrics[J].Transportation Standardization,2022,8(6):108-119.
[6]王 沛.交通能源融合,促进绿色发展[N].人民日报,2023-08-15(08).
WANG Pei.Integration of transportation and energy to promote green development[N].People's Daily,2023-08-15(08).
[7]沙爱民,孙泽强.新疆高速公路自洽能源系统的应用实践[J].中国公路,2023(21):40.
SHA Ai-min,SUN Ze-qiang.Application of self-consistent energy system in Xinjiang highway[J].China Highway,2023(21):40.
[8]DÍAZ-DORADO E,SUÁREZ-GARCÍA A,CARRILLO C J,et al.Optimal distribution for photovoltaic solartrackers to minimize power losses caused by shadows[J].Renewable Energy,2011,36(6):1826-1835.
[9]JUNG J,HAN S,KIM B.Digital numerical map-oriented estimation of solar energy potential for site selection ofphotovoltaic solar panels on national highway slopes[J].Applied Energy,2019,242:57-68.
[10]KIM B,HAN S,HEO J,et al.Proof-of-concept of a two-stage approach for selecting suitable slopes on ahighway network for solar photovoltaic systems:A case study in South Korea[J].Renewable Energy,2020,151:366-377.
[11]BOIKOVÁM,BILÍK M,MADOLA V,et al.The effect of azimuth and tilt angle changes on the energybalance of photovoltaic system installed in the Southern Slovakia Region[J].Applied Sciences,2021,11(19):8998.
[12]GARDASHOV R,EMINOV M,KARA G,et al.The optimum daily direction of solar panels in the highlands,derived by an analytical method[J].Renewable and Sustainable Energy Reviews,2020,120:109668.
[13]UR REHMAN N,HIJAZI M,UZAIR M.Solar potential assessment of public bus routes for solar buses[J].Renewable Energy,2020,156:193-200.
[14]刘璐瑶.多能互补系统源荷预测及协同运行优化[D].济南:山东大学,2022.
LIU Lu-yao.Power generation forecasting,load forecasting and coordinated optimization of multi-energy systems[D].Jinan:Shandong University,2022.
[15]雷定猷,马 强,徐新平,等.基于非线性主成分分析和GA-RBF的高速公路交通量预测方法[J].交通运输工程学报,2018,18(3):210-217.
LEI Ding-you,MA Qiang,XU Xin-ping,et al.Forecasting method of expressway traffic volume based on NPCA andGA-RBF[J].Journal of Traffic and Transportation Engineering,2018,18(3):210-217.
[16]田 晟,李 嘉.基于GA-tBP模型的城市道路交通量预测[J].科学技术与工程,2023,23(7):3053-3059.
TIAN Sheng,LI Jia.Urban road traffic volume prediction based on GA-tBP model[J].Science Technology and Engineering,2023,23(7):3053-3059.
[17]董 添.基于深度学习的电力负荷模式识别与预测方法研究[D].长春:吉林大学,2022.
DONG Tian.Research on electrical load pattern recognition and load forecasting based on deep learning[D].Changchun:Jilin University,2022.
[18]郭 崇.需求侧响应下的电力负荷预测与供需效益协调优化研究[D].沈阳:沈阳农业大学,2018.
GUO Chong.The research on power load forecasting and supply-demand benefit optimal dispatch considering demand side response[D].Shenyang:Shenyang Agricultural University,2018.
[19]李艳波,尹 镨,陈俊硕,等.结合改进残差网络和Bi-LSTM的短期电力负荷预测[J].哈尔滨工业大学学报,2023,55(8):79-86.
LI Yan-bo,YIN Pu,CHEN Jun-shuo,et al.Short-term power load forecasting based on combination of residual network and Bi-LSTM[J].Journal of Harbin Institute of Technology,2023,55(8):79-86.
[20]郑永康.相空间重构与支持向量机结合的短期负荷预测研究[D].成都:西南交通大学,2008.
ZHENG Yong-kang.Short-term load forecasting based on phase space reconstruction and support vector machine[D].Chengdu:Southwest Jiaotong University,2008.
[21]赵文婷.并网型微电网源荷预测及优化运营管理研究[D].太原:太原理工大学,2021.
ZHAO Wen-ting.Research on power generation forecasting,load forecasting and optimal operation management of grid-connected microgrid[D].Taiyuan:Taiyuan University of Technology,2021.
[22]黄 乾.基于卷积神经网络的短期负荷概率预测方法研究[D].南宁:广西大学,2021.
HUANG Qian.Short-term probabilistic load forecasting based on convolution neural network[D].Nanning:Guangxi University,2021.
[23]韩晓娟,程 成,籍天明,等.计及电池使用寿命的混合储能系统容量优化模型[J].中国电机工程学报,2013,33(34):91-97,16.
HAN Xiao-juan,CHENG Cheng,JI Tian-ming,et al.Capacity optimal modeling of hybrid energy storage systems considering battery life[J].Proceedings of the CSEE,2013,33(34):91-97,16.
[24]KHARE V,NEMA S,BAREDAR P.Solar-wind hybrid renewable energy system:A review[J].Renewable and Sustainable Energy Reviews,2016,58:23-33.
[25]ZHANG X J,CHEN H S,XU Y J,et al.Distributed generation with energy storage systems:A case study[J].Applied Energy,2017,204:1251-1263.
[26]SRIVASTAVA A K,KUMAR A A,SCHULZ N N.Impact of distributed generations with energy storage devices on the electric grid[J].IEEE Systems Journal,2012,6(1):110-117.
[27]LI Y,FENG B,LI G Q,et al.Optimal distributed generation planning in active distribution networks considering integration of energy storage[J].Applied Energy,2018,210:1073-1081.
[28]FARHADI M,MOHAMMED O.Energy storage technologies for high-power applications[J].IEEE Transactions on Industry Applications,2016,52(3):1953-1961.
[29]李红霞,李建林,米 阳.新能源侧储能优化配置技术研究进展[J].储能科学与技术,2022,11(10):3257-3267.
LI Hong-xia,LI Jian-lin,MI Yang.Summary of research on new energy side energy storage optimization configuration technology[J].Energy Storage Science and Technology,2022,11(10):3257-3267.
[30]李相俊,马会萌,姜 倩.新能源侧储能配置技术研究综述[J].中国电力,2022,55(1):13-25.
LI Xiang-jun,MA Hui-meng,JIANG Qian.Review of energy storage configuration technology on renewable energy side[J].Electric Power,2022,55(1):13-25.
[31]曾若辰.城市轨道交通RAMS技术发展与展望[J].施工技术(中英文),2023,52(19):1-9,16.
ZENG Ruo-chen.Development and prospect of RAMS in urban rail transit[J].Construction Technology,2023,52(19):1-9,16.
[32]莫志刚.基于RAMS的地铁信号系统运营维护管理研究[D].武汉:华中科技大学,2018.
MO Zhi-gang.Research on maintenance management of signaling engineering in metro revenue service by RAMS[D].Wuhan:Huazhong University of Science and Technology,2018.
[33]陈 蕾.城市轨道交通引入RAMS管理的必要性[J].城市轨道交通研究,2007,10(5):4-7.
CHEN Lei.The introduction of RAMS management into urban rail transit[J].Urban Mass Transit,2007,10(5):4-7.
[34]康 熊,王卫东,刘金朝.基于RAMS的高速铁路轨道平顺状态综合评价体系研究[J].中国铁道科学,2013,34(2):13-17.
KANG Xiong,WANG Wei-dong,LIU Jin-zhao.Research on comprehensive evaluation system for track irregularity of high-speed railway based on RAMS[J].China Railway Science,2013,34(2):13-17.
[35]杨 媛,吴俊勇,吴 燕.基于可信性理论的电气化铁路牵引供电系统RAMS的模糊评估[J].北京交通大学学报,2008,32(5):89-93.
YANG Yuan,WU Jun-yong,WU Yan.Fuzzy RAMS evaluation of high-speed railway traction power supply system based on uncertainty theory[J].Journal of Beijing Jiaotong University,2008,32(5):89-93.
[36]韩 婧.公交主导型城市交通系统效能评价方法研究[D].南京:东南大学,2017.
HAN Jing.Study on the transit-oriented traffic system efficiency index system[D].Nanjing:Southeast University,2017.
[37]胡 松.城市轨道交通效能评价研究[D],北京:北京交通大学,2015.
HU Song.Research on evaluation of urban rail transit efficiency[D].Beijing:Beijing Jiaotong University,2015.

Memo

Memo:
-
Last Update: 2024-10-20