|Table of Contents|

Determining method for shape parameters of dual-ellipsoidal heat source model(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2025年6期
Page:
124-134
Research Field:
桥梁智能运维与防灾减灾
Publishing date:

Info

Title:
Determining method for shape parameters of dual-ellipsoidal heat source model
Author(s):
LIU Xiao-guang12 ZHU Wei-qing1 YU Qi1 FAN Yong-hui2 ZHOU Bo1 WANG Hao2
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. SCEGC Mechanized Construction Group Co., Ltd., Xi'an 710032, Shaanxi, China)
Keywords:
bridge engineering dual-ellipsoidal heat source shape parameter welding temperature field molten pool dimension
PACS:
U445
DOI:
-
Abstract:
To accurately determine the welding temperature field of steel structures and precisely predict the welding stress and deformation during welding process, a determining and predicting method for shape parameters of dual-ellipsoidal heat source model was proposed. The T-joint welding test of steel truss joints was conducted to obtain the molten pool dimensions and measuring point temperature fields, and the simulation model was established. The influences of heat source shape parameters on temperature measuring points at different distances were investigated, and the value of heat source thermal efficiency was determined. Objective functions were established based on the peak temperature of measuring points and molten pool dimensions. Error weight coefficients were defined according to the influence of heat source on measuring points at different distances, the constraint conditions of heat source shape parameters were set, and a multi-objective determination mathematical model for heat source parameters was constructed. Simulation tests were designed within the constraint conditions. The test and simulation results were calculated according to the objective functions. The heat source shape parameters were taken as independent variables, and the objective function calculation results were taken as dependent variables to fit the error-heat source dimension function. The optimal heat source shape parameters were determined when the dependent variable was minimal. On this basis, prediction regression curves for heat source shape parameters were fitted. The research results show that when the heat source thermal efficiency remains constant, the closer a measurement point is to the heat source, the larger the temperature error of the measuring point, and the smaller the influence of heat source dimension on temperature. The greater the influence of heat source on measurement points at different distances, the greater the error weight coefficient. The maximum errors between the simulated peak temperature and molten pool dimensions according to the optimal heat source shape parameters and the measured values are 2.38% and 5.62%, respectively. The maximum error between the predicted heat source shape parameters and the simulated test design values is 6.92%. It can be seen that the proposed determining method for shape parameters of dual-ellipsoidal heat source model has a high accuracy and can greatly simplify the shape parameter solving process.6 tabs, 14 figs, 31 refs.

References:

[1] 郑凯锋,冯霄暘,衡俊霖,等.钢桥2020年度研究进展[J].土木与环境工程学报(中英文),2021,43(增1):53-69.
ZHENG Kai-feng, FENG Xiao-yang, HENG Jun-lin, et al. State-of-the-art review of steel bridges in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 53-69.
[2]高占远,郭彦林.大型或复杂钢结构焊接残余应力与变形研究进展[J].建筑科学与工程学报,2016,33(5):108-119.
GAO Zhan-yuan, GUO Yan-lin. Research progress on welding residual stress and deformation in large or complex steel structure[J]. Journal of Architecture and Civil Engineering, 2016, 33(5): 108-119.
[3]骆文泽,成慧梅,刘红艳,等.高强钢Q960E对接接头残余应力与焊接变形的数值模拟[J].中国机械工程,2023,34(17):2095-2105,2141.
LUO Wen-ze, CHENG Hui-mei, LIU Hong-yan, et al. Numerical simulation of residual stress and welding deformation in high-strength steel Q960E butt-welded joints[J]. China Mechanical Engineering, 2023, 34(17): 2095-2105, 2141.
[4]谷京晨,童莉葛,黎 磊,等.焊接数值模拟中热源的选用原则[J].材料导报,2014,28(1):143-146.
GU Jing-chen, TONG Li-ge, LI Lei, et al. Selection criteria of heat source model on the welding numerical simulation[J]. Materials Reports, 2014, 28(1): 143-146.
[5]李 岩,刘 琪,李艳彪,等.薄壁GH3536尾喷管组焊变形控制工艺优化仿真[J].稀有金属材料与工程,2023,52(8):2775-2782.
LI Yan, LIU Qi, LI Yan-biao, et al. Optimal simulation of welding deformation control process for thin-wall GH3536 tail nozzle[J]. Rare Metal Materials and Engineering, 2023, 52(8): 2775-2782.
[6]王 慧,兰 箭,华 林.基于组合热源模型的激光深熔焊数值模拟[J].武汉理工大学学报,2014,36(11):39-45.
WANG Hui, LAN Jian, HUA Lin. Numerical simulation of laser deep-penetration welding based on the combined heat source model[J]. Journal of Wuhan University of Technology, 2014, 36(11): 39-45.
[7]张红卫,桂良进,范子杰.焊接热源参数优化方法研究及验证[J].清华大学学报(自然科学版),2022,62(2):367-373.
ZHANG Hong-wei, GUI Liang-jin, FAN Zi-jie. Research and verification of welding heat source parameter optimization model[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 367-373.
[8]DHINGRA A K, MURPHY C L. Numerical simulation of welding-induced distortion in thin-walled structures[J]. Science and Technology of Welding and Joining, 2005, 10(5): 528-536.
[9]FICQUET X, SMITH D J, TRUMAN C E, et al. Measurement and prediction of residual stress in a bead-on-plate weld benchmark specimen[J]. International Journal of Pressure Vessels and Piping, 2009, 86(1): 20-30.
[10]顾 颖,李亚东,强 斌,等.基于ANSYS优化设计求解双椭球热源模型参数[J].焊接学报,2016,37(11):15-18,129.
GU Ying, LI Ya-dong, QIANG Bin, et al. Parameter optimization of double ellipsoidal heat source model by ANSYS[J]. Transactions of the China Welding Institution, 2016, 37(11): 15-18, 129.
[11]李瑞英,赵 明,吴春梅.基于SYSWELD的双椭球热源模型参数的确定[J].焊接学报,2014,35(10):93-96,117-118.
LI Rui-ying, ZHAO Ming, WU Chun-mei. Determination of shape parameters of double ellipsoid heat source model in numerical simulation based on SYSWELD software[J]. Transactions of the China Welding Institution, 2014, 35(10): 93-96, 117-118.
[12]杨 婕,张志莲,肖云峰,等.基于Sysweld的焊接接头热源模型二次开发[J].焊接技术,2019,48(7):19-22,2.
YANG Jie, ZHANG Zhi-lian, XIAO Yun-feng, et al. Development of heat source model of welded joint based on Sysweld[J]. Welding Technology, 2019, 48(7): 19-22, 2.
[13]CHUJUTALLI J H, LOURENÇO M I, ESTEFEN S F. Experimental-based methodology for the double ellipsoidal heat source parameters in welding simulations[J]. Marine Systems and Ocean Technology, 2020, 15: 110-123.
[14]BJELIC ' M B, RADIC ˇEVIC ' B S, KOVANDA K, et al. Multi-objective calibration of the double-ellipsoid heat source model for GMAW process simulation[J]. Thermal Science, 2022, 26(3): 2081-2092.
[15]李培麟,陆 皓.双椭球热源参数的敏感性分析及预测[J].焊接学报,2011,32(11):89-91,95,117-118.
LI Pei-lin, LU Hao. Sensitivity analysis and prediction of double ellipsoid heat source parameters[J]. Transactions of the China Welding Institution, 2011, 32(11): 89-91, 95, 117-118.
[16]李娅娜,刘嘉浩.基于焊接质量双椭球热源形状参数的简化模型[J].焊接,2021(8):7-11,62.
LI Ya-na, LIU Jia-hao. Simplified model of heat source shape parameters of double ellipsoid based on welding quality[J]. Welding and Joining, 2021(8): 7-11, 62.
[17]钱闪光,姚 激.角接热源模型校核研究[J].热加工工艺,2017,46(1):195-198,202.
QIAN Shan-guang, YAO Ji. Study on checking of angle joint heat source model[J]. Hot Working Technology, 2017, 46(1): 195-198, 202.
[18]武少杰,曲皇屹,程方杰.基于变速GTAW焊接温度场解析模型的熔深预测研究[J].天津大学学报(自然科学与工程技术版),2024,57(1):64-72.
WU Shao-jie, QU Huang-yi, CHENG Fang-jie. Research on penetration depth prediction based on an analytical model of variable speed GTAW welding temperature field[J]. Journal of Tianjin University(Science and Technology), 2024, 57(1): 64-72.
[19]JIA X L, XU J, LIU Z H, et al. A new method to estimate heat source parameters in gas metal arc welding simulation process[J]. Fusion Engineering and Design, 2014, 89(1): 40-48.
[20]TAFARROJ M M, KOLAHAN F. A comparative study on the performance of artificial neural networks and regression models in modeling the heat source model parameters in GTA welding[J]. Fusion Engineering and Design, 2018, 131: 111-118.
[21]JIAO H H, JIN H. An inverse method for determining geometric parameters of heat source models using analytical solutions and regression analysis[J]. Journal of Mechanical Science and Technology, 2023, 37(12): 6739-6747.
[22]王江超,杜仕忠,陈相飞,等.高强钢薄板切割变形的机理研究及预控分析[J].中国舰船研究,2025,20(2):299-307.
WANG Jiang-chao, DU Shi-zhong, CHEN Xiang-fei, et al. Mechanism analysis of cutting distortion of thin plate with high tensile strength steel for its prediction and mitigation[J]. Chinese Journal of Ship Research, 2025, 20(2): 299-307.
[23]樊云博,鲍亮亮,蒋 俊,等.基于铜套线圈加热器的管道热丝TIG焊模拟技术研究[J].焊接技术,2023,52(7):53-57.
FAN Yun-bo, BAO Liang-liang, JIANG Jun, et al. Research on simulation technology of pipeline hot wire TIG weld based on copper coil heater[J]. Welding Technology, 2023, 52(7): 53-57.
[24]GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15: 299-305.
[25]方 静,祁文军,胡国玉.8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J].材料导报,2023,37(22):155-160.
FANG Jing, QI Wen-jun, HU Guo-yu. Numerical simulation and experimental study on TIG welding of 8 mm medium and heavy plate TC4 titanium alloy plate[J]. Materials Reports, 2023, 37(22): 155-160.
[26]DUPONT J N, MARDER A R. Thermal efficiency of arc welding processes[J]. Welding Journal—Including Welding Research Supplement, 1995, 74(12): 406-416.
[27]GARCÍA-GARCÍA V, CAMACHO-ARRIAGA J C, REYES-CALDERÓN F. A simplified elliptic paraboloid heat source model for autogenous GTAW process[J]. International Journal of Heat and Mass Transfer, 2016, 100: 536-549.
[28]AARBOGH H M, HAMIDE M, FJAER H G, et al. Experimental validation of finite element codes for welding deformations[J]. Journal of Materials Processing Technology, 2010, 210(13): 1681-1689.
[29]马 悦.双椭球焊接热源模型一般式的数值模拟研究[D].天津:河北工业大学,2015.
MA Yue. Study on numerical simulation of general expression of double ellipsoidal heat source model[D]. Tianjin: Hebei University of Technology, 2015.
[30]左善超.精密机床焊接结构件残余应力分析及调控机理研究[D].北京:北京科技大学,2023.
ZUO Shan-chao. Research on residual stress analysis and regulation mechanism in welding structure of precision machine tools[D]. Beijing: University of Science and Technology Beijing, 2023.
[31]董文超,文明月,庞辉勇,等.Fe-Cr-Ni-Mo系高强钢焊接热影响区特征热循环曲线的建立与组织[J].金属热处理,2017,42(12):207-212.
DONG Wen-chao, WEN Ming-yue, PANG Hui-yong, et al. Microstructure and characterized thermal cycle curve of heat-affected zone of a Fe-Cr-Ni-Mo high-strength steel[J]. Heat Treatment of Metals, 2017, 42(12): 207-212.

Memo

Memo:
-
Last Update: 2025-12-20