|Table of Contents|

Analysis of temperature field and structural damage of frame bridges under vehicle fire(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2025年6期
Page:
17-30
Research Field:
桥梁智能运维与防灾减灾
Publishing date:

Info

Title:
Analysis of temperature field and structural damage of frame bridges under vehicle fire
Author(s):
LIU Xu-zheng12 SHAO Jian-ye2 GUO He3 QIAO Lei3 WU Gang12ZHENG Shang-min12 RAO Wen-zhen1
(1. State Key Laboratory of Safety and Resilience of Civil Engineering in Mountain Area, East China Jiaotong University, Nanchang 330013, Jiangxi, China; 2. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, Jiangxi, China; 3. China Communications Construction Road &Bridge Inspection and Maintenance Co., Ltd., Beijing 101301, China)
Keywords:
bridge engineering frame bridge fire damage temperature field vehicle fire top slab
PACS:
U447
DOI:
-
Abstract:
To explore the temperature field distribution and structural damage of frame bridges under vehicle fire, numerical models under different fire scenarios were established by fire dynamics simulator(FDS). The influences of fire intensity, fire position, net span, bridge width and net height on the adiabatic temperature fields of the soffit of top slab were analyzed. Heat transfer model of frame bridge under most unfavorable fire scenario was established by ABAQUS software, and internal temperature field distributions of frame bridge at different fire times were obtained. The variation laws of mid-span section equivalent area, equivalent moment of inertia and flexural capacity of the critical section of top slab with fire time were analyzed by isotherm method, and the corresponding predictive equations were established. The research results show that the adiabatic temperature of the soffit of top slab increases with the increase of fire intensity, the distance between fire location and road centerline, and the net height of frame bridge decreases with the increase of the net span of frame bridge. The width of frame bridge has no significant effect on the maximum adiabatic temperature of the soffit of top slab, although the minimum adiabatic temperature decreases with the increase of bridge width. Under the most unfavorable fire scenario, the minimum and maximum adiabatic temperatures of the soffit of top slab reach 1 154 ℃ and 1 350 ℃, respectively. The internal temperature of the critical section of top slab decreases sharply along the thickness direction because concrete features pronounced thermal inertia. The isotherm depths corresponding to 300 ℃, 500 ℃ and 800 ℃ at the mid-span section of the critical section of top slab increase with fire duration, although the increase rate gradually slows down. The reduction coefficients of the mid-span section area, moment of inertia and flexural capacity of the critical section of top slab all decrease quadratically with fire duration. The research results provide a reference for fire damage assessment, reinforcement and repair of the frame bridges under vehicle fire.4 tabs, 28 figs, 36 refs.

References:

[1] 中华人民共和国交通运输部.2023年交通运输行业发展统计公报[EB/OL].(2024-06-18)[2024-11-14].https://xxgk. mot.gov.cn/2020/jigou/zhghs/20240
6/t20240614_4142419.html.
Ministry of Transport of the People's Republic of China. 2023 Statistical Bulletin on Transport Industry Development[EB/OL].(2024-06-18)[2024-11-14]. https://xxgk.mot.gov.cn/2020/jigou/zhghs/202406/
t20240614_4142419.html.
[2]张 岗,贺拴海,侯 炜,等.预应力混凝土桥梁抗火研究综述[J].长安大学学报(自然科学版),2018,38(6):1-10.
ZHANG Gang, HE Shuan-hai, Hou Wei, et al. Review on fire resistance of prestressed-concrete bridge[J]. Journal of Chang'an University(Natural Science Edition), 2018, 38(6): 1-10.
[3]KODUR V, GIL A. Fire hazard in concrete bridges: Review, assessment and mitigation strategies[J]. Structure and Infrastructure Engineering, 2024, 20(10): 1577-1594.
[4]张 岗,赵晓翠,宋超杰,等.桥梁火灾科学与安全保障技术综述[J].交通运输工程学报,2023,23(6):94-113.
ZHANG Gang, ZHAO Xiao-cui, SONG Chao-jie, et al. Review on bridge fire science and safety guarantee technology[J].Journal of Traffic and Transportation Engineering, 2023, 23(6): 94-113.
[5]张 岗,宋超杰,李徐阳,等.燃油火灾下预应力混凝土梁耐火试验[J].中国公路学报,2022,35(1):210-221.
ZHANG Gang, SONG Chao-jie, LI Xu-yang, et al. Experimental study on fire resistance of prestressed concrete girders under fuel fire exposure[J]. China Journal of Highway and Transportation, 2022, 35(1): 210-221.
[6]BENEBERU E, YAZDANI N. Residual strength of CFRP strengthened prestressed concrete bridge girders after hydrocarbon fire exposure[J]. Engineering Structures, 2019, 184: 1-14.
[7]罗文林,刘其伟,储智峰.预应力混凝土空心板梁火灾损伤特性研究[J].桥梁建设,2021,51(2):91-98.
LUO Wen-lin, LIU Qi-wei, CHU Zhi-feng. Study of fire damage characteristics of prestressed concrete hollow slab beam[J]. Bridge Construction, 2021, 51(2): 91-98.
[8]ALOS-MOYA J, PAYA-ZAFORTEZA I, HOSPITALER A, et al. Valencia bridge fire tests: Experimental study of a composite bridge under fire[J]. Journal of Constructional Steel Research, 2017, 138: 538-554.
[9]WU X Q, HUANG T, AU F T K, et al. Posttensioned concrete bridge beams exposed to hydrocarbon fire[J]. Journal of Structural Engineering, 2020, 146(10): 04020210.
[10]LIU X Z, YU C X, QUAN W, et al. Inspection,materials testing and field testing of a prestressed concrete box bridge after fire exposure[J]. Fire Safety Journal, 2019, 108: 102852.
[11]申雁鹏.火灾环境下桥梁混凝土动、静弹性模量试验研究[J].公路工程,2021,46(2):228-233.
SHEN Yan-peng. Experimental research on dynamic and static elastic modulus of bridge concrete under fire environment[J]. Highway Engineering, 2021, 46(2): 228-233.
[12]许肇峰,陈映贞,饶 瑞.火灾下混凝土空心板温度场及损伤规律研究[J].中国公路学报,2019,32(1):87-98.
XU Zhao-feng, CHEN Ying-zhen, RAO Rui. Temperature fields and damage pattern of hollow-core concrete slab exposed to fire[J]. China Journal of Highway and Transportation, 2019, 32(1): 87-98.
[13]张 岗,侯章伟,宋超杰,等.油罐车火灾下考虑混凝土高温爆裂的PC箱梁承载能力[J].长安大学学报(自然科学版),2018,38(6):79-88.
ZHANG Gang, HOU Zhang-wei, SONG Chao-jie, et al. Bearing capacity of PC box girder based on concrete spalling under fuel tanker fire exposure[J]. Journal of Chang'an University(Natural Science Edition), 2018, 38(6): 79-88.
[14]ZHANG G, KODUR V, HOU W, et al. Evaluating fire resistance of prestressed concrete bridge girders[J]. Structural engineering and mechanics, 2017, 62(6): 663-674.
[15]SONG C J, ZHANG G, HOU W, et al. Performance of prestressed concrete box bridge girders under hydrocarbon fire exposure[J]. Advances in Structural Engineering, 2020, 23(8): 1521-1533.
[16]李永进,任庆新,翁兴贵.火灾作用下钢管混凝土叠合柱偏压力学性能研究[J].华东交通大学学报,2022,39(6):10-17.
LI Yong-jin, REN Qing-xin, WENG Xing-gui. Research on mechanical properties of concrete filled steel tube reinforced concrete column under fire[J]. Journal of East China Jiaotong University, 2022, 39(6): 10-17.
[17]宋超杰,张 岗,王富强,等.火灾后柱式桥墩剩余承载性能安全评价[J].长安大学学报(自然科学版),2021,41(2):55-65.
SONG Chao-jie, ZHANG Gang, WANG Fu-qiang, et al. Safety evaluation of residual load-capacity of column piers after fire exposure[J]. Journal of Chang'an University(Natural Science Edition), 2021, 41(2): 55-65.
[18]刘旭政,李任福,余晨曦,等.火灾后混凝土桥梁结构安全初步评估方法[J].广西大学学报(自然科学版),2022, 47(1): 62-73.
LIU Xu-zheng, LI Ren-fu, YU Chen-xi, et al. Preliminary safety assessment method for concrete bridge structure after fire exposure[J]. Journal of Guangxi University(Natural Science Edition), 2022, 47(1): 62-73.
[19]李鸣鹤,刘志文,邵光强.桥下火灾空心板梁梁底温度场数值模拟[J].公路交通科技,2023,40(11):123-130,156.
LI Ming-he, LIU Zhi-wen, SHAO Guang-qiang. Numerical simulation on temperature field of hollow slab girder bottom in fire under bridge[J]. Journal of Highway and Transportation Research and Development, 2023, 40(11): 123-130, 156.
[20]MA R J, CUI C J, MA M L, et al. Numerical simulation and simplified model of vehicle-induced bridge deck fire in the full-open environment considering wind effect[J]. Structure and Infrastructure Engineering, 2021, 17(12): 1698- 1709.
[21]WU X Q, HUANG T, AU F T K, et al. A localized fire model for predicting the surface temperature of box girder bridges subjected to tanker truck fire[J]. Fire Technology, 2020, 56: 2059-2087.
[22]魏 伟.PC箱梁桥火灾温度场及受火性能研究[D].南昌:南昌大学,2016.
WEI Wei. The fire temperature field of PC box girder bridge and fire performance research[D]. Nanchang: Nanchang University, 2016.
[23]王 伟.火灾下钢桁架拱桥结构性能分析及抗火设计研究[D].武汉:武汉理工大学,2020.
WANG Wei. Structural performance analysis and fire resistance design of steel truss arch bridges under fire[D]. Wuhan: Wuhan University of Technology, 2020.
[24]杨文旭,秦广冲,杨佳立,等.基于热-力耦合的悬索桥结构抗火性能研究[J].公路工程,2024,49(1):53-59,81.
YANG Wen-xu, QIN Guang-chong, YANG Jia-li, et al. Study on fire resistance of suspension bridge structure based on thermal mechanical coupling[J]. Highway Engineering, 2024, 49(1): 53-59, 81.
[25]PERIS-SAYOL G, PAYA-ZAFORTEZA I, ALOS-MOYA J, et al. Analysis of the influence of geometric, modeling and environmental parameters on the fire response of steel bridges subjected to realistic fire scenarios[J].Computers & Structures, 2015,158: 333-345.
[26]李利军.公路火灾温度场数值模拟及大跨径缆索承重桥梁火灾分析[D].西安:长安大学,2013.
LI Li-jun. Numerical simulation of highway fire temperature field and analysis of long-span cable support bridge fire[D]. Xi'an: Chang'an University, 2013.
[27]陈长坤,王玮玉,康 恒,等.不同火源面积下隧道火灾温度场试验与数值模拟分析[J].中国公路学报,2018,31(6):235-243.
CHEN Chang-kun, WANG Wei-yu, KANG Heng, et al. Experimental and numerical simulation analysis of temperature field of tunnel fire with different fire source areas[J]. China Journal of Highway and Transportation, 2018, 31(6): 235-243.
[28]HESKESTAD G. Engineering relations for fire plumes[J]. Fire Safety Journal, 1984, 7(1): 25-32.
[29]JTG B01—2014,公路工程技术标准[S].
JTG B01—2014, Technical standard of highway engineering[S].
[30]HOWARD J D, PAYA-ZAFORTEZA I, PERIS-SAYOL G. Parametric fire curves for I-girder bridges submitted to under deck tanker fires[J]. Engineering Structures, 2024, 306: 117810.
[31]WICKSTROM U, DUTHINH D, MCGRATTAN K. Adiabatic surface temperature for calculating heat transfer to fire exposed structures[C]//Interscience Communications Ltd. Proceedings of the Eleventh International Interflam Conference. London: Interscience Communications Ltd, 2007: 167.
[32]孙亚宁.不同长宽比下矩形火源的火焰燃烧特性研究[D].合肥:中国科学技术大学,2023.
SUN Ya-ning. Research on the combustion characteristics of rectangular fires with different aspect ratios[D]. Hefei: University of Science and Technology of China, 2023.
[33]EN 1993-1-2, Eurocode 3: Design of steel structures—Part 1.2: General rules—Structural fire design[S].
[34]LIM L, WADE C. Experimental fire tests of two-way concrete slabs[R]. Porirua City: University of Canterbury and Branz Ltd, 2002.
[35]EN 1992-1-2: 2004, Eurocode 2: Design of concrete structures—Part 1-2: General rules—Structural fire design[S].
[36]DBJ/T 15-81—2022,建筑混凝土结构耐火设计技术规程[S].
DBJ/T 15-81—2022, Code for fire resistance design of concrete structures in buildings[S].
[37]JTG 3362—2018,公路钢筋混凝土及预应力混凝土桥涵设计规范[S].
JTG 3362—2018, Specifications for design of highway reinforced concrete and prestressed concrete bridges and culverts[S].

Memo

Memo:
-
Last Update: 2025-12-20