|Table of Contents|

Dynamic characteristics of cement soil pile composite foundation in flood irrigation area under traffic load(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2025年5期
Page:
117-128
Research Field:
桥梁与隧道工程
Publishing date:

Info

Title:
Dynamic characteristics of cement soil pile composite foundation in flood irrigation area under traffic load
Author(s):
YANG Han-xi12 WANG Meng-jie3 XIA Meng-can3 ZHANG Tian-yang3 SUN Wei-feng4
(1. School of Economics and Management, Chang'an University, Xi'an 710064, Shaanxi, China; 2. School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; 3. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 4. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi, China)
Keywords:
Key words:subgrade engineering flood irrigation area composite foundation dynamic characteristic torsional shear test numerical simulation
PACS:
U416.1
DOI:
10.19721/j.cnki.1671-8879.2025.05.010
Abstract:
To investigate the long-term performance and deformation control of low embankment composite foundation in flood irrigation area under traffic load, hollow cylinder torsional shear tests were conducted to analyze the changes in cumulative plastic strains and dynamic elastic moduli of pure soil and cement soil under cyclic load. Quantitative expressions for the dynamic elastic modulus of cement soil were established in relation to the vertical cyclic stress ratio and cyclic torsional shear stress ratio. On this basis, numerical simulation methods were used to explore the dynamic responses of composite foundations under different cement soil pile lengths, area replacement rates, and vehicle axle loads. The research results show that the strain of cement soil under a single load is 1/8-1/6 of that of pure soil. After 10 000 cycles of loading, the cumulative plastic strain of cement soil is 1/12-1/6 of that of pure soil, and the dynamic elastic modulus is 3-4 times that of pure soil. The cumulative plastic strain of cement soil under a low vertical cyclic stress is lower than that under a higher level. While the dynamic elastic modulus shows the opposite pattern. When the vertical cyclic stress ratio is 0.15, 0.25, and 0.35, the average cumulative plastic strain of cement soil is 3.39%, 13.22%, and 16.52%, and the average dynamic elastic modulus is 127.13, 119.62, and 99.89 MPa, respectively. When the vertical cyclic stress ratio is low, the increase in the cyclic torsional shear stress ratio has a more significant effect on the increase in the cumulative plastic strain of cement soil, especially, when the cyclic torsional shear stress ratio is not greater than 0.2. The dynamic elastic modulus of cement soil decreases with the increases in the vertical cyclic stress ratio and cyclic torsional shear stress ratio. The critical threshold is determined by the vertical dynamic stress being equal to 10% of the self-weight stress of the soil. The influencing depth of traffic load on the low embankment cement soil composite foundation is about 3.5 m. Therefore, it is recommended to control the pile length of the low embankment cement soil composite foundation in the flood irrigation area at 6 m, and the area replacement rate no exceeding 16.8%.2 tabs, 11 figs, 31 refs.

References:

[1] 王梦洁,张莎莎,杨晓华,等.循环荷载作用下漫灌区粉质黏土的动力特性研究[J].岩土力学,2025,46(4):1215-1227.
WANG Meng-jie, ZHANG Sha-sha, YANG Xiao-hua, et al. Dynamic characteristics of silty clay in flood irrigation areas under cyclic loading[J]. Rock and Soil Mechanics, 2025, 46(4): 1215-1227.
[2]蒋敏敏,蔡正银,曹 培,等.循环荷载对粉质黏土力学性质的影响[J].岩土力学,2009,30(增2):204-207.
JIANG Min-min, CAI Zheng-yin, CAO Pei, et al. Effects of cyclic loading on mechanical properties of silty clay[J]. Rock and Soil Mechanics, 2009, 30(S2): 204-207.
[3]刘文化,杨 庆,唐小微,等.干湿循环条件下粉质黏土在循环荷载作用下的动力特性试验研究[J].水利学报,2015,46(4):425-432.
LIU Wen-hua, YANG Qing, TANG Xiao-wei, et al. Experimental study on the dynamic characteristics of silt clay subjected to drying-wetting cycles under cyclic loading[J]. Journal of Hydraulic Engineering, 2015, 46(4): 425-432.
[4]杨晓华,万 琪,刘大鹏,等.新疆砾石土低路堤动力特性[J].交通运输工程学报,2019,19(3):1-9.
YANG Xiao-hua, WAN Qi, LIU Da-peng, et al. Dynamic characteristics of gravel soil low embankment in Xinjiang[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 1-9.
[5]蔡袁强,严舒豪,曹志刚,等.交通荷载下粉质黏土路基翻浆冒泥机理试验[J].吉林大学学报(工学版),2021,51(5):1742-1748.
CAI Yuan-qiang, YAN Shu-hao, CAO Zhi-gang, et al. Experiments to investigate mechanism of mud pumping of road base on silty clay soil under cyclic loading[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1742-1748.
[6]何忠明,王盘盘,张文周,等.考虑不同单次加载时长影响的循环荷载作用下软土动力特性[J].长安大学学报(自然科学版),2023,43(5):30-39.
HE Zhong-ming, WANG Pan-pan, ZHANG Wen-zhou, et al. Dynamic characteristics of soft soil under cyclic loading considering influence of different single loading durations[J]. Journal of Chang'an University(Natural Science Edition), 2023, 43(5): 30-39.
[7]张莎莎,郝智晨,张天工,等.循环荷载作用下温州海相软基土变形特性试验研究与数值模拟[J].建筑科学与工程学报,2025,42(3):183-195.
ZHANG Sha-sha, HAO Zhi-chen, ZHANG Tian-gong, et al. Experimental study and numerical simulation on deformation characteristics of marine soft foundation soil of Wenzhou under cyclic loading[J]. Journal of Architecture and Civil Engineering, 2025, 42(3): 183-195.
[8]冯瑞玲,谢永利,杨晓华.路堤下粉喷桩复合地基的设计方法探讨[J].岩土力学,2007,28(7):1487-1490.
FENG Rui-ling, XIE Yong-li, YANG Xiao-hua, et al. Discussion on design method of DJM-pile compound grounds for embankment[J]. Rock and Soil Mechanics, 2007, 28(7): 1487-1490.
[9]郑 刚,龚晓南,谢永利,等.地基处理技术发展综述[J].土木工程学报,2012,45(2):127-146.
ZHENG Gang, GONG Xiao-nan, XIE Yong-li, et al. State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45(2): 127-146.
[10]王志丰,王亚琼,谢永利.水泥搅拌桩施工引起深层土体水平位移分析[J].建筑科学与工程学报,2016,33(4):90-96.
WANG Zhi-feng, WANG Ya-qiong, XIE Yong-li, et al. Investigation into lateral displacement of subsoils induced by installing soil-cement columns[J]. Journal of Architecture and Civil Engineering, 2016, 33(4): 90-96.
[11]刘松玉,周 建,章定文,等.地基处理技术进展[J].土木工程学报,2020,53(4):93-110.
LIU Song-yu, ZHOU Jian, ZHANG Ding-wen, et al. State of the art of the ground improvement technology in China[J]. China Civil Engineering Journal, 2020, 53(4): 93-110.
[12]杨晓华,张建伟,张莎莎,等.黄土地区高速公路地基处理技术研究进展[J].长安大学学报(自然科学版),2022,42(1):16-32.
YANG Xiao-hua, ZHANG Jian-wei, ZHANG Sha-sha, et al. Research progress on foundation treatment techniques of expressway in loess area[J]. Journal of Chang'an University(Natural Science Edition), 2022, 42(1): 16-32.
[13]刘飞禹,陶 宇,王 军,等.分级真空预压联合电渗和强夯法试验[J].中国公路学报,2020,33(9):168-179.
LIU Fei-yu, TAO Yu, WANG Jun, et al. Experiment on hierarchical vacuum preloading combined with electro-osmosis and dynamic compaction[J]. China Journal of Highway and Transport, 2020, 33(9): 168-179.
[14]吴丙权,倪万魁,拓文鑫,等.强夯动荷载作用方向对黄土边坡稳定性的影响分析[J].振动与冲击,2024,43(1):283-289.
WU Bing-quan, NI Wan-kui, TUO Wen-xin, et al. Effects of dynamic load direction of strong tamping on stability of loess slope[J]. Journal of Vibration and Shock, 2024, 43(1): 283-289.
[15]徐东升,汪 稔,孟庆山,等.海相淤泥软土地基强夯置换砂桩试验分析[J].岩土力学,2009,30(12):3831-3836.
XU Dong-sheng, WANG Ren, MENG Qing-shan, et al. Field test analysis of dynamic consolidation and replacement sand pile on marine soft soil[J]. Rock and Soil Mechanics, 2009, 30(12): 3831-3836.
[16]白 冰,徐华轩,刘海波,等.强夯置换法处理松软土地基若干问题研究[J].岩石力学与工程学报,2010,29(增1):3001-3006.
BAI Bing, XU Hua-xuan, LIU Hai-bo, et al. Some problems on dynamic replacement method to improve soft soil ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3001-3006.
[17]王正振,黄 磊,戴国亮,等.湿陷性黄土地基孔内深层超强夯技术的加固范围[J].浙江大学学报(工学版),2025,59(4):750-758.
WANG Zheng-zhen, HUANG Lei, DAI Guo-liang, et al. Strengthening range of super down-hole dynamic consolidation technology in collapsible loess foundation[J]. Journal of Zhejiang University(Engineering Science), 2025, 59(4): 750-758.
[18]周燕国,王训阳,姚鹏飞,等.振冲碎石桩地基处理物理模拟相似性初步研究[J].岩土工程学报,2025,47(增1):5-9.
ZHOU Yan-guo, WANG Xun-yang, YAO Peng-fei, et al. Preliminary study on the similitude of physical modelling of ground improvement by vibro stone columns[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(S1): 5-9.
[19]白顺果,侯永峰,张鸿儒.循环荷载作用下水泥土桩复合地基的临界循环应力比和永久变形分析[J].岩土工程学报,2006,28(1):84-87.
BAI Shun-guo, HOU Yong-feng, ZHANG Hong-ru, et al. Analysis on critical cyclic stress ratio and permanent deformation of composite foundation improved by cement-soil piles under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 84-87.
[20]章定文,范礼彬,刘松玉,等.水泥土搅拌桩复合地基固结机理室内模型试验[J].中国公路学报,2014,27(12):1-9.
ZHANG Ding-wen, FAN Li-bin, LIU Song-yu, et al. Laboratory model tests on consolidation mechanism of soft clay improved by deep mixing cement columns[J]. China Journal of Highway and Transport, 2014, 27(12): 1-9.
[21]郑 刚,郭知一,杨新煜,等.桩体刚度对复合地基支承路堤失稳破坏模式的影响研究[J].岩土工程学报,2019,41(增1):49-52.
ZHENG Gang, GUO Zhi-yi, YANG Xin-yu, et al. Influences of stiffness of piles on failure modes of embankment of composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 49-52.
[22]LIU F Y, ZHU K, HU X Q, et al. Experimental simple shear study of composite soil with cemented soil core[J]. Marine Georesources and Geotechnology, 2019, 37(8): 960-971.
[23]张 振,郑文强,叶观宝,等.循环荷载下水泥土桩复合单元体变形特性及其地基长期沉降计算方法[J].中国公路学报,2022,35(11):21-29.
ZHANG Zhen, ZHENG Wen-qiang, YE Guan-bao, et al. Deformation and long-term settlement calculation method of unit cell of soil-cement column-reinforced soft soil under cyclic loading[J]. China Journal of Highway and Transport, 2022, 35(11): 21-29.
[24]叶观宝,秦粮凯,张 振,等.循环荷载下水泥土桩复合体动力参数试验研究[J].水文地质工程地质,2022,49(1):48-56.
YE Guan-bao, QIN Liang-kai, ZHANG Zhen, et al. An experimental study of dynamic parameters of unit cell of deep mixed column-reinforced soft clay under dynamic loading[J]. Hydrogeology and Engineering Geology, 2022, 49(1): 48-56.
[25]ZHOU S Q, ZHANG H J, WANG R, et al. Model test of bearing characteristics of fly ash foundation under cyclic loading[J]. Processes, 2022, 10(6): 1117.
[26]黄 博,丁 浩,陈云敏.高速列车荷载作用的动三轴试验模拟[J].岩土工程学报,2011,33(2):195-202.
HUANG Bo, DING Hao, CHEN Yun-min. Simulation of high-speed train load by dynamic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 195-202.
[27]王 晅,张家生,杨果岳,等.重载作用下公路路基及基层动应力测试研究[J].振动与冲击,2007,26(6):169-173,192.
WANG Xuan, ZHANG Jia-sheng, YANG Guo-yue, et al. Test on dynamic stress of roadbed and pavement under heavy loads[J]. Journal of Vibration and Shock, 2007, 26(6): 169-173, 192.
[28]刘飞禹,蔡袁强,徐长节,等.循环荷载下软土动弹性模量衰减规律研究[J].浙江大学学报(工学版),2008,42(9):1479-1483.
LIU Fei-yu, CAI Yuan-qiang, XU Chang-jie, et al. Degradation of dynamic elastic modulus of soft clay under cyclic loading [J]. Journal of Zhejiang University(Engineering Science), 2008, 42(9): 1479-1483.
[29]蔡袁强,赵 莉,曹志刚,等.不同频率循环荷载下公路路基粗粒填料长期动力特性试验研究[J].岩石力学与工程学报,2017,36(5):1238-1246.
CAI Yuan-qiang, ZHAO Li, CAO Zhi-gang, et al. Experimental study on dynamic characteristics of unbound granular materials under cyclic loading with different frequencies[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1238-1246.
[30]王家全,畅振超,唐 毅,等.循环荷载下加筋砾性土填料的动三轴试验分析[J].岩土力学,2020,41(9):2851-2860.
WANG Jia-quan, CHANG Zhen-chao, TANG Yi, et al. Dynamic triaxial test analysis of reinforced gravel soil under cyclic loading[J]. Rock and Soil Mechanics, 2020, 41(9): 2851-2860.
[31]崔新壮,包振昊,郝建文,等.重载公路路基动力响应现场测试与三维空间分布规律[J].中国公路学报,2023,36(10):75-83.
CUI Xin-zhuang, BAO Zhen-hao, HAO Jian-wen, et al. Field test and three-dimensional spatial distribution of dynamic response of heavy-duty highway subgrades[J]. China Journal of Highway and Transport, 2023, 36(10): 75-83.

Memo

Memo:
-
Last Update: 2025-09-30