|Table of Contents|

Test on wetting influence on mechanical characteristics of coarse-grained mixed soil in Xinjiang area(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2025年03期
Page:
52-64
Research Field:
道路工程
Publishing date:

Info

Title:
Test on wetting influence on mechanical characteristics of coarse-grained mixed soil in Xinjiang area
Author(s):
ZHANG Chong12 YUAN Sheng-yang12 TIAN Kai-yuan12 LIU Jie3 LIU Xue-jun4QI Yan-lu5 LIU Xian-feng12
Keywords:
road engineering coarse-grained mixed soil test research mechanical property
PACS:
U416.1
DOI:
10.19721/j.cnki.1671-8879.2025.03.005
Abstract:
In order to investigate the influence of wetting on the mechanical properties of coarse-grained mixed soil in Xinjiang region, the gravelly soil in Turpan area was taken as the research object, and compaction and triaxial test were carried out on the mixed coarse-grained soil after scaled by equal proportion scaling method. The particle breakage of coarse-grained mixed soil with different moisture contents was analyzed. The effects of wetting on the shear deformation, pore ratio, shear strength and other mechanical indexes of coarse-grained mixed soil were studied. The results show that the particle breakage rate of coarse-grained mixed soil in compaction decreases with the increase of water content, and there is the maximum particle breakage when the natural water content is about 2%. The possibility of breakage decreases significantly after the particle size is less than 5mm. All specimens show the development law of volumetric strain of contraction first and then dilatancy in shear, while the dilatancy gradually decreases with the increase of confining pressure. Due to the lubrication of water film, the dilatancy of the soil after wetting is further reduced. When the confining pressure reaches 150 kPa, the overall volumetric strain of the wetted soil sample at the end of the shear is close to 0. The elastic modulus of the sample increases approximately linearly with the increase of confining pressure, the dilatancy angle decreases significantly, and the Poisson's ratio decreases slightly. After wetting, the elastic modulus of the sample attenuates under different confining pressures, and the attenuation values are similar. The dilatancy angle is further reduced due to water action, but the Poisson's ratio of the soil is less affected by confining pressure and wetting. The cohesion of coarse-grained mixed soil does not change significantly with soil wetting, while the internal friction angle decreases by about 15%. The strength attenuation of soil skeleton after wetting is more due to the fact that water reduces the sliding friction between coarse particles. The research results can provide a reference for further exploring the collapsibility mechanism and constitutive relationship of coarse-grained mixed soil and analyzing the stability of foundation.1 tab, 17 figs, 37 refs.

References:

[1] 李志农,金昌宁.新疆典型土类路基干压实试验[J].中国公路学报,2007,20(2):23-28.
LI Zhi-long, JIN Chang-ning. Test on dry compaction of typical earth subgrade in Xinjiang[J]. China Journal of Highway and Transport, 2007, 20(2): 23-28.
[2]杨 斌,赖国泉,杨有海,等.铁路路基戈壁土填料级配及压实特性分析[J].中国铁道科学,2011,32(1):7-11.
YANG Bin, LAI Guo-quan, YANG You-hai, et al. Analysis on the grading and the compaction characteristics of the gobi soil filling for railway subgrade[J]. China Railway Science, 2011, 32(1): 7-11.
[3]刘学军,周海明.粗粒混合土既有建(构)筑物地基沉降原因分析实例[J].西部探矿工程,2016,28(2):26-28.
LIU Xue-jun, ZHOU Hai-ming. Analysis of settlement causes of existing structures in coarse-grained mixed soil[J]. West-China Exploration Engineering, 2016, 28(2): 26-28.
[4]乔国文.吐鲁番地区公路工程湿陷性粗粒土评价方法优化及防治[J].西南公路,2015(4):85-91.
QIAO Guo-wen. Optimization of evaluation method and prevention of highway engineering collapsiblecoarse-grained soil in Turpan area[J]. Southwest Highway, 2015(4): 85-91.
[5]刘先峰,张炎飞,袁胜洋,等.交角对路基斜跨坎儿井暗渠临界深度的影响[J].铁道工程学报,2022,39(3):26-31.
LIU Xian-feng, ZHANG Yan-fei, YUAN Sheng-yang, et al. Effect of intersection angle on the critical depthof high-speed railway embankment obliquely crossing qanat culvert[J]. Journal of Railway EngineeringSociety, 2022, 39(3): 26-31.
[6]杨贝贝,阿不都沙拉木·加拉力丁,马 桂,等.吐鲁番市坎儿井空间分布格局的影响因子探析[J].中国农村水利水电,2017(12):198-203,208.
YANG Bei-bei, Abudushalamu·Jialaliding, MA Gui, et al. An analysis of the influencing factors of spatialdistribution pattern of karez in Turpan City[J]. China Rural Water and Hydropower, 2017(12): 198-203, 208.
[7]柳洪亮.吐鲁番坎儿井综述[J].中国农史,1986(4):24-32.
LIU Hong-liang. Overview of karez in Turpan[J]. Agricultural History of China, 1986(4): 24-32.
[8]张炎飞,刘先峰,袁胜洋,等.下伏坎儿井暗渠对高速铁路路基稳定性影响[J].中国铁道科学,2021,42(3):13-20.
ZHANG Yan-fei, LIU Xian-feng, YUAN Sheng-yang, et al. Influence of underlying qanat tunnel onstability of high-speed railway subgrade[J]. China Railway Science, 2021, 42(3): 13-20.
[9]杨晓华,张莎莎,刘 伟,等.粗颗粒盐渍土工程特性研究进展[J].交通运输工程学报,2020,20(5):22-40.
YANG Xiao-hua, ZHANG Sha-sha, LIU Wei, et al. Research progress on engineering properties ofcoarse-grained saline soil[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 22-40.
[10]成正川,罗发科,李勇刚,等.基于浸水载荷试验的粗粒填土地基工程特性研究[J].科学技术与工程,2015,15(21):173-176.
CHENG Zheng-chuan, LUO Fa-ke, LI Yong-gang, et al. Study on engineering properties of soil foundationbased on load test for coarse filling soil in the case of immersion[J]. Science Technology and Engineering, 2015, 15(21): 173-176.
[11]孙安元,吴亚平,蒲增钢,等.粗颗粒盐渍土室内溶陷装置设计及试验研究[J].铁道科学与工程学报,2018,15(6):1437-1444.
SUN An-yuan, WU Ya-ping, PU Zeng-gang, et al. Design and experimental study on the indoorcollapsibility device of coarse grained salty soil[J]. Journal of Railway Science and Engineering, 2018, 15(6): 1437-1444.
[12]侯彦凯.戈壁地区粗粒土地基湿陷特性研究[J].铁道工程学报,2016,33(6):31-34.
HOU Yan-kai. Research on the collapse characteristics of coarse grained soil in gobi region[J]. Journal ofRailway Engineering Society, 2016, 33(6): 31-34.
[13]吴亚平,梁 浩,魏明强,等.级配对粗颗粒硫酸盐渍土溶陷特性的影响[J].铁道工程学报,2019,36(1):12-16,30.
WU Ya-ping, LIANG Hao, WEI Ming-Qiang, et al. Influence of gradation on subsidence characteristic ofcoarse particle sulphate soil[J]. Journal of Railway Engineering Society, 2019, 36(1): 12-16, 30.
[14]ROLLINS K M, ROLLINS R L, SMITH T D, et al. Identification and characterization of collapsible gravels[J]. Journal of Geotechnical Engineering, 1994, 120(3): 528-542.
[15]ASHOUR M, ABBAS A, ALTAHRANY A, et al. Modelling the behavior of inundated collapsible soils[J]. Engineering Reports, 2020, 2(4): e12156.
[16]ZHANG S, LIU W, CHEN W. Collapse test studies on coarse grain sulfite saline soil as an embankment fillmaterial[J]. Arabian Journal of Geosciences, 2020, 13: 1-10.
[17]张建渊,胡海东,沈 鑫.兰新高速铁路沿线盐渍土地基的溶陷特性[J].铁道建筑,2018,58(3):59-63.
ZHANG Jian-yuan, HU Hai-dong, SHEN Xin. Collapsibility characteristics of saline soil foundation inLanzhou-Xinjiang High Speed Railway[J]. Railway Engineering, 2018, 58(3): 59-63.
[18]程东幸,刘志伟,柯 学.粗颗粒盐渍土溶陷性影响因素研究[J].工程地质学报,2013,21(1):109-114.
CHENG Dong-xing, LIU Zhi-wei, KE Xue. Field and laboratory tests for influential factors on salt resolvingslump of coarse particle saline soil[J]. Journal of Engineering Geology, 2013, 21(1): 109-114.
[19]WAN Q, YANG X, MA D, et al. Experimental study on collapsibility of coarse-grained saline soil subgradein the Qarhan Salt Lake Area,Western China[C]//WANG Hai-zhong, WEI Heng, ZHANG Lei, et al. CICTP 2020: Advanced Transportation Technologies and Development-Enhancing Connections. Reston: ASCE, 2020: 1546-1557.
[20]BAYESTEH H, GHASEMPOUR T. Role of the location and size of soluble particles in the mechanical behavior ofcollapsible granular soil: A DEM simulation[J]. Computational Particle Mechanics, 2019, 6: 327-341.
[21]袁雅贤,魏亚辉,冯怀平,等.兰新铁路第二双线盐渍土溶陷特性研究[J].铁道建筑,2016(2):92-96.
YUAN Ya-xian, WEI Ya-hui, FENG Huai-ping, et al. Study on melt sinking characteristics of saline soil inLanzhou-Xinjiang Second Double Track Railway[J]. Railway Engineering, 2016(2): 92-96.
[22]范 文,魏亚妮,于 渤,等.黄土湿陷微观机理研究现状及发展趋势[J].水文地质工程地质,2022,49(5):144-156.
FAN Wen, WEI Ya-ni, YU Bo, et al. Research progress and prospect of loess collapsible mechanism inmicro-level[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 144-156.
[23]谢婉丽,王延寿,马中豪,等.黄土湿陷机理研究现状及发展趋势[J].现代地质,2015,29(2):397-407.
XIE Wan-li, WANG Yan-shou, MA Zhong-hao, et al. Research status and prospect of loess collapsibilitymechanism[J]. Geoscience, 2015, 29(2): 397-407.
[24]程东幸,樊柱军,高建伟,等.粗颗粒盐渍土力学参数的现场直剪试验研究[J].工程勘察,2017,45(12):21-23,35.
CHENG Dong-xing, FAN Zhu-jun, GAO Jian-wei, et al. Study on the field shearing test of coarse grainedsaline soil[J].Geotechnical Investigation & Surveying, 2017, 45(12): 21-23, 35.
[25]CHANG D, LAI Y, YU F. An elastoplastic constitutive model for frozen saline coarse sandy soil undergoingparticle breakage[J]. Acta Geotechnica, 2019, 14(6): 1757-1783.
[26]张莎莎, 杨晓华. 粗粒盐渍土大型冻融循环剪切试验[J]. 长安大学学报(自然科学版), 2012, 32(3): 11-16.
ZHANG Sha-sha, YANG Xiao-hua. Large shear test on coarse saline soil with freeze-thaw cycle[J]. Journalof Chang'an University(Natural Science Edition), 2012, 32(3): 11-16.
[27]WANG S, DING J, XU J, et al. Shear strength behavior of coarse-grained saline soils after freeze-thaw[J]. KSCE Journal of Civil Engineering, 2019, 23(6): 2437-2452.
[28]吴 琪,孙苏豫,杭天柱,等.砂-粉混合料颗粒接触状态的临界条件确定[J].哈尔滨工程大学学报,2024,45(2):277-283,297.
WU Qi, SUN Su-yu, HANG Tian-zhu, et al. Procedure for characterizing the critical particle contact state ofsand-fines mixtures[J]. Journal of Harbin Engineering University, 2024, 45(2): 277-283, 297.
[29]SU Y. Investigation of the mechanical behavior of fine/coarse soil mixture[D]. Paris: Ecole Des Ponts Paris Tech, 2021.
[30]潘家军,孙向军.粗颗粒土缩尺方法及缩尺效应研究进展[J].长江科学院院报,2023,40(11):1-8.
PAN Jia-jun, SUN Xiang-jun. A review of downscaling methods for coarse granular soil and theireffectiveness[J]. Journal of Changjiang River Scientific Research Institute,2023, 40(11): 1-8.
[31]朱俊高,刘 忠,翁厚洋,等.试样尺寸对粗粒土强度及变形试验影响研究[J].四川大学学报(工程科学版),2012,44(6):92-96.
ZHU Jun-gao, LIU Zhong, WENG Hou-yang, et al. Study on effect of specimen size upon strength and deformation behavior of coarse-grained soil in triaxial test[J]. Journal of Sichuan University(Engineering Science Edition), 2012, 44(6): 92-96.
[32]王 飞,徐佩华,高井望,等.基于PFC方法的粗粒土三轴试验尺寸效应研究[J].公路工程,2014,39(2):80-83,162.
WANG Fei, XU Pei-hua, GAO Jing-wang, et al. Research on size effects of coarse-grained soils triaxial testsbased on PFC[J]. Highway Engineering, 2014, 39(2): 80-83, 162.
[33]亓 帅.循环荷载下高铁路基粗-细粒混合料力学特性[D].杭州:浙江大学,2020.
QI Shuai. Mechanical behaviors of coarse grain-fines mixture of high-speed railway embankment under cyclic loadings[D]. Hangzhou: Zhejiang University, 2020.
[34]朱俊高,翁厚洋,吴晓铭,等.粗粒料级配缩尺后压实密度试验研究[J].岩土力学,2010,31(8):2394-2398.
ZHU Jun-gao, WENG Hou-yang, WU Xiao-ming, et al. Experimental study of compact density of scaledcoarse-grained soil[J]. Rock and Soil Mechanics, 2010, 31(8): 2394-2398.
[35]VERMEER P A. DE BORST R, VERMEER P A, et al. Non-associated plasticity for soils,concrete and rock[J]. Heron, 1984, 29(3): 1-64.
[36]李 振,邢义川.干密度和细粒含量对砂卵石及碎石抗剪强度的影响[J].岩土力学,2006,27(12):2255-2260.
LI ZHEN, XING Yi-chuan. Effects of dry density and percent fines on shearing strength of sandy cobble and broken stone[J]. Rock and Soil Mechanics, 2006, 27(12): 2255-2260.
[37]D G·弗雷德隆德,H·拉哈尔佐.非饱和土力学[M].北京:中国建筑工业出版社,1997.
FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M]. Beijing: China Architecture & Building Press, 1997.

Memo

Memo:
-
Last Update: 2025-05-30