|Table of Contents|

State of charge estimation of lithium-ion batteries based on strong tracking adaptive cubature Kalman filter algorithm(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2025年2期
Page:
165-176
Research Field:
汽车与机械工程
Publishing date:

Info

Title:
State of charge estimation of lithium-ion batteries based on strong tracking adaptive cubature Kalman filter algorithm
Author(s):
WU Chun-ling1 ZHAO Yu-bing1 GENG Li-min1 CHEN Hao1 LIU Pan-zhi1 ZHAO Xuan2
(1. School of Energy and Electrical Engineering, Chang'an University, Xi'an 710064,Shaanxi, China; 2. School of Automobile, Chang'an University, Xi'an 710064, Shaanxi, China)
Keywords:
automotive engineering lithium-ion battery cubature Kalman filter strong tracking filter non-Gaussian noise
PACS:
TM912
DOI:
10.19721/j.cnki.1671-8879.2025.02.014
Abstract:
To address the issues of system noise statistical uncertainty and battery model inaccuracy in traditional Kalman filtering algorithms for state of charge estimation under non-Gaussian noise interference, a new algorithm combining strong tracking filtering and adaptive cubature Kalman filtering was proposed, namely the strong tracking adaptive cubature Kalman filter. The advantages of STF and CKF were integrated by utilizing the existing cubature Kalman filtering algorithm. Time-varying fading factors were introduced into the time update and measurement update equations to ensure the orthogonality of the output residual sequence and make the residuals conform to the characteristics of Gaussian white noise. By adaptively adjusting the gain matrix online, the algorithm effectively enhances the system's ability to track abrupt state changes. To verify the effectiveness of the proposed algorithm, it was compared with the strong tracking adaptive extended Kalman filter and the strong tracking cubature Kalman filter in estimating terminal voltage and SOC under both Gaussian noise and non-Gaussian interference. The research results show that under Gaussian noise interference, the SOC estimation accuracy of ST-ACKF improves by 49% and 16% compared to ST-AEKF and ST-CKF, respectively, with an increase in computation time of 1.259 1 s and 0.352 3 s. Under non-Gaussian noise interference, the SOC estimation accuracy improves by 62% and 18% compared to ST-AEKF and ST-CKF, respectively, with an increase in computation time of 1.195 5 s and 0.206 3 s. The proposed algorithm proves to be an effective SOC estimation method under non-Gaussian noise interference, offering high estimation accuracy, good numerical stability, and strong robustness.6 tabs, 15 figs, 27 refs.

References:

[1] 王义军,左 雪.锂离子电池荷电状态估算方法及其应用场景综述[J].电力系统自动化,2022,46(14):193-207.
WANG Yi-jun,ZUO Xue.A review of methods for estimating the state of charge of lithium-ion batteries and their application scenarios[J].Automation of Electric Power Systems,2022,46(14):193-207.
[2]庞 辉,郭 龙,武龙星,等.考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J].电工技术学报,2021,36(10):2178-2189.
PANG Hui,GUO Long,WU Long-xing,et al.An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J].Transactions of China Electrotechnical Society,2021,36(10):2178-2189.
[3]WU C L,HU W B,MENG J H,et al.State-of-charge estimation of lithium-ion batteries based on MCC-AEKF in non-Gaussian noise environment[J].Energy,2023(274):127316.
[4]张照娓,郭天滋,高明裕,等.电动汽车锂离子电池荷电状态估算方法研究综述[J].电子与信息学报,2021,43(7):1803-1815.
ZHANG Zhao-wei,GUO Tian-zi,GAO Ming-yu,et al.A review of research on state of charge estimation methods for Lithium-ion batteries in electric vehicles[J].Journal of Electronics & Information,2021,43(7):1803-1815.
[5]续 远.基于安时积分法与开路电压法估测电池SOC[J].新型工业化,2022,12(1):123-124,127.
XU Yuan.Estimation of battery SOC based on ampere-hour integration method and open circuit voltage method[J].New Industrialization,2022,12(1):123-124,127.
[6]赵 轩,李美莹,余 强,等.电动汽车动力锂电池状态估计综述[J].中国公路学报,2023,36(6):254-283.
ZHAO Xuan,LI Mei-ying,YU Qiang,et al.Overview of state estimation for power lithium batteries in electric vehicles[J].China Journal of Highway and Transport,2023,36(6):254-283.
[7]万广伟,张 强.锂离子电池SOC评估方法研究进展[J].电源技术,2023,47(9):1122-1125.
WAN Guang-wei,ZHANG Qiang.Research progress on SOC evaluation methods for lithium-ion batteries[J].Power Supply Technology,2023,47(9):1122-1125.
[8]张婷婷,于 明,李 宾,等.基于Wavelet降噪和支持向量机的锂离子电池容量预测研究[J].电工技术学报,2020,35(14):3126-3136.
ZHANG Ting-ting,YU Ming,LI Bin,et al.Research on Lithium-ion battery capacity prediction based on wavelet denoising and support vector machine[J].Transactions of China Electrotechnical Society,2020,35(14):3126-3136.
[9]CUI Z,WANG L,LI Q,et al.A comprehensive review on the state of charge estimation for Lithium-ion battery based on neural network[J].International Journal of Energy Research,2022,46(5):5423-5440.
[10]CHEN C,XIONG R,SHEN W X.A Lithium-on battery-in-the-oopapproach to test and validate multiscale dual h-infinity filters forstate-of-charge and capacity estimation[J].IEEE Transactions on Power Electronics,2018,33(1):332-342.
[11]CUI Z J,HU W H,ZHANG G Z,et al.An extended Kalman filter based SOC estimation method for Li-ion battery[J].Energy Reports,2022,8(2):81-87.
[12]LI W Q,YANG Y,WANG D Q,et al.The multi-innovation extended Kalman filter algorithm for battery SOC estimation[J].Ionics,2020,26(12):6145-6156.
[13]PANG H,GUO L,WU L X,et al.An enhanced temperature-dependent model and state-of-charge estimation for a Li-ion battery using Extended Kalman filter[J].International Journal of Energy Research,2020,44(9):7254-7267.
[14]李超然,肖 飞,樊亚翔,等.基于门控循环单元神经网络和 Huber-M 估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法[J].电工技术学报,2020,35(9):2051-2062.
LI Chao-ran,XIAO Fei,FAN Ya-xiang,et al.A hybrid approach to Lithium-ion battery SOC estimation based on recurrent neural network with gated recurrent unit and Huber-M robust Kalman filter[J].Transactions of China Electrotechnical Society,2020,35(9):2051- 2062.
[15]巫春玲,胡雯博,孟锦豪,等.基于最大相关熵扩展卡尔曼滤波算法的锂离子电池荷电状态估计[J].电工技术学报,2021,36(24):5165-5175.
WU Chun-ling,HU Wen-bo,MENG Jin-hao,et al.State of charge estimation of Lithium-ion batteries based on maximum correlation-entropy criterion extended Kalman filtering algorithm[J].Transactions of China Electrotechnical Society,2021,36(24):5165-5175.
[16]GIANNITRAPANI A,CECCARILLI N,SCORTECCI F,et al.Comparison of EKF and UKF for spacecraft localiza-tion via angle measurements[J].IEEE Transactions on Aerospace and Electronic Systems,2011,47(1):75-84.
[17]常宇健,赵 辰.EKF、UKF和CKF的滤波性能对比研究[J].石家庄铁道大学学报(自然科学版),2019,32(2):104-110.
CHANG Yu-jian,ZHAO Chen.Comparative study on filtering performance of EKF,UKF,and CKF[J].Journal of Shijiazhuang Tiedao University(Natural Science Edition),2019,32(2):104-110.
[18]赵亚妮.基于强跟踪卡尔曼滤波的电池SOC估计[J].沈阳工业大学学报,2018,40(2):192-197.
ZHAO Ya-ni.Battery state of charge estimation based on strong tracking kalman filtering[J].Journal of Shenyang University of Technology,2018,40(2):192-197.
[19]LIU S Y,GAO M,HUAI W X,et al.Federated strong tracking filtering for nonlinear systems with multiple sensors[J].Transactions of the Institute of Measurement and Control,2022,44(16):3141-3153.
[20]吕东辉,王炯琦,熊 凯,等.适用处理非高斯观测噪声的强跟踪卡尔曼滤波器[J].控制理论与应用,2019,36(12):1997-2004.
LU Dong-hui,WANG Jiong-qi,XIONG Kai,et al.Strong tracking Kalman filter for non-Gaussian observed noises[J].Control Theory & Applications,2019,36(12):1997-2004.
[21]ZHAN M J,WU B G,XU G Q,et al.Application of adaptive extended Kalman algorithm based on strong tracking fading factor in stat-of-charge estimation of Lithium-ion battery[J].Energy,2023,284:129095.
[22]盛国良,翁朝阳,陆宝春.基于改进型自适应强跟踪卡尔曼滤波的电池SOC估算[J].南京理工大学学报,2020,44(6):689-695.
SHENG Guo-liang,WENG Chao-yang,LU Bao-chun.Battery SOC estimation based on improved adaptive strong tracking Kalman filter[J].Journal of Nanjing University of Science and Technology,2020,44(6):689-695.
[23]XIA B,WANG H,WANG M,et al.A new method for state of charge estimation of Lithium-ion battery based on strong tracking cubature Kalman filter[J].Energies,2015,8(12):13458-13472.
[24]帅孟超,宋春宁,邓志刚.基于强跟踪容积卡尔曼滤波的电池SOC估计[J].计算机仿真,2020,37(12):62-66.
SHUAI Meng-chao,SONG Chun-ning,DENG Zhi-gang.Battery SOC estimation based on strong tracking volumetric Kalman filter[J].Computer Simulation,2020,37(12):62-66.
[25]武龙星,庞 辉,晋佳敏,等.基于电化学模型的锂离子电池荷电状态估计方法综述[J].电工技术学报,2022,37(7):1703-1725.
WU Long-xing,PANG Hui,JIN Jia-min,et al.Overview of state of charge estimation methods for Lithium-ion batteries based on electrochemical models[J].Transactions of China Electrotechnical Society,2022,37(7):1703-1725.
[26]陈息坤,孙 冬,陈小虎.锂离子电池建模及其荷电状态鲁棒估计[J].电工技术学报,2015,30(15):141-147.
CHEN Xi-kun,SUN Dong,CHEN Xiao-hu.Modeling and state of charge robust estimation for Lithium-ion batteries[J].Transactions of China Electrotechnical Society,2015,30(15):141-147.
[27]丁家琳,肖 建,赵 涛.自适应CKF强跟踪滤波器及其应用[J].电机与控制学报,2015,19(11):111-120.
DING Jia-lin,XIAO Jian,ZHAO Tao.Adaptive CKF strong tracking filter and its application[J].Electric Machines and Control Journal,2015,19(11):111-120.

Memo

Memo:
-
Last Update: 2025-04-01