[1] 王义军,左 雪.锂离子电池荷电状态估算方法及其应用场景综述[J].电力系统自动化,2022,46(14):193-207.
WANG Yi-jun,ZUO Xue.A review of methods for estimating the state of charge of lithium-ion batteries and their application scenarios[J].Automation of Electric Power Systems,2022,46(14):193-207.
[2]庞 辉,郭 龙,武龙星,等.考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J].电工技术学报,2021,36(10):2178-2189.
PANG Hui,GUO Long,WU Long-xing,et al.An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J].Transactions of China Electrotechnical Society,2021,36(10):2178-2189.
[3]WU C L,HU W B,MENG J H,et al.State-of-charge estimation of lithium-ion batteries based on MCC-AEKF in non-Gaussian noise environment[J].Energy,2023(274):127316.
[4]张照娓,郭天滋,高明裕,等.电动汽车锂离子电池荷电状态估算方法研究综述[J].电子与信息学报,2021,43(7):1803-1815.
ZHANG Zhao-wei,GUO Tian-zi,GAO Ming-yu,et al.A review of research on state of charge estimation methods for Lithium-ion batteries in electric vehicles[J].Journal of Electronics & Information,2021,43(7):1803-1815.
[5]续 远.基于安时积分法与开路电压法估测电池SOC[J].新型工业化,2022,12(1):123-124,127.
XU Yuan.Estimation of battery SOC based on ampere-hour integration method and open circuit voltage method[J].New Industrialization,2022,12(1):123-124,127.
[6]赵 轩,李美莹,余 强,等.电动汽车动力锂电池状态估计综述[J].中国公路学报,2023,36(6):254-283.
ZHAO Xuan,LI Mei-ying,YU Qiang,et al.Overview of state estimation for power lithium batteries in electric vehicles[J].China Journal of Highway and Transport,2023,36(6):254-283.
[7]万广伟,张 强.锂离子电池SOC评估方法研究进展[J].电源技术,2023,47(9):1122-1125.
WAN Guang-wei,ZHANG Qiang.Research progress on SOC evaluation methods for lithium-ion batteries[J].Power Supply Technology,2023,47(9):1122-1125.
[8]张婷婷,于 明,李 宾,等.基于Wavelet降噪和支持向量机的锂离子电池容量预测研究[J].电工技术学报,2020,35(14):3126-3136.
ZHANG Ting-ting,YU Ming,LI Bin,et al.Research on Lithium-ion battery capacity prediction based on wavelet denoising and support vector machine[J].Transactions of China Electrotechnical Society,2020,35(14):3126-3136.
[9]CUI Z,WANG L,LI Q,et al.A comprehensive review on the state of charge estimation for Lithium-ion battery based on neural network[J].International Journal of Energy Research,2022,46(5):5423-5440.
[10]CHEN C,XIONG R,SHEN W X.A Lithium-on battery-in-the-oopapproach to test and validate multiscale dual h-infinity filters forstate-of-charge and capacity estimation[J].IEEE Transactions on Power Electronics,2018,33(1):332-342.
[11]CUI Z J,HU W H,ZHANG G Z,et al.An extended Kalman filter based SOC estimation method for Li-ion battery[J].Energy Reports,2022,8(2):81-87.
[12]LI W Q,YANG Y,WANG D Q,et al.The multi-innovation extended Kalman filter algorithm for battery SOC estimation[J].Ionics,2020,26(12):6145-6156.
[13]PANG H,GUO L,WU L X,et al.An enhanced temperature-dependent model and state-of-charge estimation for a Li-ion battery using Extended Kalman filter[J].International Journal of Energy Research,2020,44(9):7254-7267.
[14]李超然,肖 飞,樊亚翔,等.基于门控循环单元神经网络和 Huber-M 估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法[J].电工技术学报,2020,35(9):2051-2062.
LI Chao-ran,XIAO Fei,FAN Ya-xiang,et al.A hybrid approach to Lithium-ion battery SOC estimation based on recurrent neural network with gated recurrent unit and Huber-M robust Kalman filter[J].Transactions of China Electrotechnical Society,2020,35(9):2051- 2062.
[15]巫春玲,胡雯博,孟锦豪,等.基于最大相关熵扩展卡尔曼滤波算法的锂离子电池荷电状态估计[J].电工技术学报,2021,36(24):5165-5175.
WU Chun-ling,HU Wen-bo,MENG Jin-hao,et al.State of charge estimation of Lithium-ion batteries based on maximum correlation-entropy criterion extended Kalman filtering algorithm[J].Transactions of China Electrotechnical Society,2021,36(24):5165-5175.
[16]GIANNITRAPANI A,CECCARILLI N,SCORTECCI F,et al.Comparison of EKF and UKF for spacecraft localiza-tion via angle measurements[J].IEEE Transactions on Aerospace and Electronic Systems,2011,47(1):75-84.
[17]常宇健,赵 辰.EKF、UKF和CKF的滤波性能对比研究[J].石家庄铁道大学学报(自然科学版),2019,32(2):104-110.
CHANG Yu-jian,ZHAO Chen.Comparative study on filtering performance of EKF,UKF,and CKF[J].Journal of Shijiazhuang Tiedao University(Natural Science Edition),2019,32(2):104-110.
[18]赵亚妮.基于强跟踪卡尔曼滤波的电池SOC估计[J].沈阳工业大学学报,2018,40(2):192-197.
ZHAO Ya-ni.Battery state of charge estimation based on strong tracking kalman filtering[J].Journal of Shenyang University of Technology,2018,40(2):192-197.
[19]LIU S Y,GAO M,HUAI W X,et al.Federated strong tracking filtering for nonlinear systems with multiple sensors[J].Transactions of the Institute of Measurement and Control,2022,44(16):3141-3153.
[20]吕东辉,王炯琦,熊 凯,等.适用处理非高斯观测噪声的强跟踪卡尔曼滤波器[J].控制理论与应用,2019,36(12):1997-2004.
LU Dong-hui,WANG Jiong-qi,XIONG Kai,et al.Strong tracking Kalman filter for non-Gaussian observed noises[J].Control Theory & Applications,2019,36(12):1997-2004.
[21]ZHAN M J,WU B G,XU G Q,et al.Application of adaptive extended Kalman algorithm based on strong tracking fading factor in stat-of-charge estimation of Lithium-ion battery[J].Energy,2023,284:129095.
[22]盛国良,翁朝阳,陆宝春.基于改进型自适应强跟踪卡尔曼滤波的电池SOC估算[J].南京理工大学学报,2020,44(6):689-695.
SHENG Guo-liang,WENG Chao-yang,LU Bao-chun.Battery SOC estimation based on improved adaptive strong tracking Kalman filter[J].Journal of Nanjing University of Science and Technology,2020,44(6):689-695.
[23]XIA B,WANG H,WANG M,et al.A new method for state of charge estimation of Lithium-ion battery based on strong tracking cubature Kalman filter[J].Energies,2015,8(12):13458-13472.
[24]帅孟超,宋春宁,邓志刚.基于强跟踪容积卡尔曼滤波的电池SOC估计[J].计算机仿真,2020,37(12):62-66.
SHUAI Meng-chao,SONG Chun-ning,DENG Zhi-gang.Battery SOC estimation based on strong tracking volumetric Kalman filter[J].Computer Simulation,2020,37(12):62-66.
[25]武龙星,庞 辉,晋佳敏,等.基于电化学模型的锂离子电池荷电状态估计方法综述[J].电工技术学报,2022,37(7):1703-1725.
WU Long-xing,PANG Hui,JIN Jia-min,et al.Overview of state of charge estimation methods for Lithium-ion batteries based on electrochemical models[J].Transactions of China Electrotechnical Society,2022,37(7):1703-1725.
[26]陈息坤,孙 冬,陈小虎.锂离子电池建模及其荷电状态鲁棒估计[J].电工技术学报,2015,30(15):141-147.
CHEN Xi-kun,SUN Dong,CHEN Xiao-hu.Modeling and state of charge robust estimation for Lithium-ion batteries[J].Transactions of China Electrotechnical Society,2015,30(15):141-147.
[27]丁家琳,肖 建,赵 涛.自适应CKF强跟踪滤波器及其应用[J].电机与控制学报,2015,19(11):111-120.
DING Jia-lin,XIAO Jian,ZHAO Tao.Adaptive CKF strong tracking filter and its application[J].Electric Machines and Control Journal,2015,19(11):111-120.