|Table of Contents|

Research progress on performance and test methods of concrete anticorrosive coating(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2024年6期
Page:
34-46
Research Field:
道路工程
Publishing date:

Info

Title:
Research progress on performance and test methods of concrete anticorrosive coating
Author(s):
WANG Qing-zhou ZHAO Hong-bin SHANG Rui-peng XIAO Cheng-zhi MA Shi-bin
(School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China)
Keywords:
road engineering concrete anti-erosion coating review chloride erosion durability evaluation
PACS:
U414
DOI:
10.19721/j.cnki.1671-8879.2024.06.004
Abstract:
Aims to enhance the durability of concrete in environments susceptible to chlorideerosion, the research progress of concrete anticorrosive coatings, including the systematicsummarization of coating protection mechanisms, classification, durability evaluation, andselection as well as application techniques of coating systems were systematically summarized.The development trends of coating material development, standardization of testing methods, andother aspects were also anticipated. The results show that coatings achieve cracksealing by forming a film on the surface, sealing internal pores, and imparting hydrophobicproperties to prevent the ingress of chloride ion solutions into concrete. Different types of coatingsare categorized based on their distinct functionalities, specifying suitable application scenarios foreach type. The selection of coating types should consider factors such as humidity, degree oferosion, and site of application. The durability of coatings plays a pivotal role in the anti-corrosiveperformance of concrete. However, existing standards in the transportation industry for evaluatingthe durability of these coatings are inconsistent and vary widely among the three categories, whichlimits optimal selection and variety updates of coatings. Considering special application scenarios,it is recommended that include resistance to abrasion and erosion as additional durability evaluationcriteria to establish a more comprehensive assessment system. The proper selection of coatingsystems and superior application techniques are crucial for effective erosion protection. Thetransportation industry has recommended specific coating systems for surface-filming coatings,which have facilitated the development of coating technology. However, there is a lack ofassessment and monitoring of construction techniques, application effects, and long-termperformance in engineering applications, which limits the transfer of experience and technologicaladvancement. Future directions should focus on establishing environmental assessment criteria forcoatings and developing functionally modified coating materials. Additionally, creating technicalstandards applicable across industries and unified methods for evaluating the erosion resistance ofcoated concrete is essential to guide and support the development in related fields.5 tabs, 2 figs, 67 refs.

References:

[1] 2022年交通运输行业发展统计公报[EB/OL].(2023-06-21)[2023-10-24].https://www.gov.cn/lianbo/bumen/202306/content_6887539.htm
Ministry of Transport of the People's Republic of China.Statistical bulletin on the development of the transportation industry in 2022[EB/OL].(2023-06-21)[2023-10-24].https://www.gov.cn/lianbo/bumen/202306/content_6887539.htm
[2]JI X L,CHEN L J,LIANG K,et al.A review on FRP bars and supplementary cementitious materials for the nextgeneration of sustainable and durable construction materials[J].Construction and BuildingMaterials,2023,383:131403.
[3]刘沐宇,梁 磊,吴 浩,等.海洋桥梁工程全寿命管理维护战略探讨[J].中国工程科学,2019,21(3):25-30.
LIU Mu-yu,LIANG Lei,WU Hao,et al.Lifecycle management and maintenance of marine bridge engineering[J].Strategic Study of CAE,2019,21(3):25-30.
[4]丁向群,陈 灿,赵丽佳,等.膨润土对混凝土抗渗透性能影响的研究[J].混凝土,2021(1):102-106.
DING Xiang-qun,CHEN Can,ZHAO Li-jia,et al.Effect of bentonite on the permeability resistance of concrete[J].Concrete,2021(1):102-106.
[5]SALADI N,MONTANARI L,DE LA VARGA I,et al.Assessing durability properties of ultra-high performance concrete-class materials[J].Materials and Structures,2023,56(8):155.
[6]LYNA P,TAWEECHAI S,SOMNUK T.Experimental investigation on the degradation of coating on concrete surfaces exposed to accelerated and natural UV in chloride environment[J].Journal of Adhesion Science and Technology,2023,37(2):240-256.
[7]TAHRI W,HU X,SHI C J,et al.Review on corrosion of steel reinforcement in alkali-activated concretes in chloride-containing environments[J].Construction and Building Materials,2021,293:123484.
[8]张 铖,李维红,范金朋,等.不同防护涂层提升混凝土耐久性能研究[J].混凝土,2019(12):165-168.
ZHANG Cheng,LI Wei-hong,FAN Jin-peng,et al.Study on durability of concrete structures strengthened by different protective coatings[J].Concrete,2019(12):165-168.
[9]ELNAGGAR E M,ELSOKKARY T M,SHOHIDE M A,et al.Surface protection of concrete by new protective coating[J].Construction and Building Materials,2019,220:245-252.
[10]SONG J L,LI Y X,XU W,et al.Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion[J].Journal of Colloid and Interface Science,2019,541:86-92.
[11]孙红尧,张兴铎,李森林,等.防护涂料在钢筋混凝土结构表面的国内应用现状[J].涂料工业,2019,49(5):79-87.
SUN Hong-yao,ZHANG Xing-duo,LI Sen-lin,et al.Status of application of protective coatings on reinforced concrete surface in China[J].Paint & Coatings Industry,2019,49(5):79-87.
[12]张利铨,林上顺,陶志蕾,等.跨海大桥RC桥墩防腐蚀研究进展[J].水利与建筑工程学报,2022,20(1):177-183.
ZHANG Li-quan,LIN Shang-shun,TAO Zhi-lei,et al.Research progress on corrosion protection of RC piers of sea crossing bridges[J].Journal of Water Resources and Architectural Engineering,2022,20(1):177-183.
[13]ZHANG T,ZHANG X F,LI P F,et al.Experimental research on fatigue performance of reinforced concrete T-shaped beams under corrosion-fatigue coupling action[J].Materials,2023,16(3):1257.
[14]ZHANG C Y,ZHANG S F,YU J W,et al.Water absorption behavior of hydrophobized concrete using silane emulsion as admixture[J].Cement and Concrete Research,2022,154:106738.
[15]DI MUNDO R,LABIANCA C,CARBONE G,et al.Recent advances in hydrophobic and icephobic surface treatments of concrete[J].Coatings,2020,10(5):449.
[16]MILLÁN R G P,BYLINSKI H,NIEDOSTATKIEWICZ M.Deterioration and protection of concrete elements embedded in contaminated soil:A review[J].Materials,2021,14(12):3253.
[17]ZHANG Y H,LI Y Z,THAKUR V K,et al.Bio-based reactive diluents as sustainable replacements for styrene in MAESO resin[J].RSC Advances,2018,8(25):13780-13788.
[18]PAN X Y,SHI Z G,SHI C J,et al.A review on concrete surface treatment part Ⅰ:Types and mechanisms[J].Construction and Building Materials,2017,132:578-590.
[19]CHOI S M,LEE S,SHIN E J.Synthesis and characterization of biopolyol-based waterborne polyurethane modified through complexation with chitosan[J].Nanomaterials,2022,12(7):1143.
[20]WANG L X,ZHANG J W,WANG F J,et al.Investigation on the effects of polyaniline/lignin composites on the performance of waterborne polyurethane coating for protecting cement-based materials[J].Journal of Building Engineering,2023,64:105665.
[21]LIU H C,WEI L W,GAO F S,et al.Performance research and formulation optimization of high-performance local insulation spray coating materials[J].Nanomaterials,2022,12(19):3344.
[22]齐玉宏,张国梁,池金锋,等.混凝土防腐涂料的研究进展[J].涂料工业,2018,48(11):63-71,78.
QI Yu-hong,ZHANG Guo-liang,CHI Jin-feng,et al.Progress in anticorrosive coatings for concrete[J].Paint & Coatings Industry,2018,48(11):63-71,78.
[23]JT/T 695—2007,混凝土桥梁结构表面涂层防腐技术条件[S].
JT/T 695—2007,Specification of anti-corrosive coating for concrete bridge structure[S].
[24]DUGAS R,FORERO-SABOYA J D,PONROUCH A.Methods and protocols for reliable electrochemical testing in post-Li batteries(Na,K,Mg,and Ca)[J].Chemistry of Materials,2019,31(21):8613-8628.
[25]GU W C,WANG W,JIAO X,et al.Waterborne superamphiphobic coatings with network structure for enhancing mechanical durability[J].RSC Advances,2022,12(26):16510-16516.
[26]PAN X Y,SHI C J,JIA L F,et al.Effect of inorganic surface treatment on air permeability of cement-based materials[J].Journal of Materials in Civil Engineering,2016,28(3):04015145.
[27]LI J F,SONG J L,ZHANG S H,et al.The effects of various silicate coatings on the durability of concrete:Mechanisms and implications[J].Buildings,2024,14(2):381.
[28]KIM T K,PARK J S.Comparative analysis of domestic and international test guidelines for various concrete repair materials[J].Materials,2022,15(9):3267.
[29]ZHANG Y Z,WANG R W,DING Z.Influence of crystalline admixtures and their synergetic combinations with other constituents on autonomous healing in cracked concrete:A review[J].Materials,2022,15(2):440.
[30]LI P F,GAN W H,YAO G Y,et al.Effect of permeable crystalline materials on the mechanical and porosity property of recycled aggregate and recycled aggregate concrete[J].Materials,2023,16(13):4596.
[31]CHEN F,QUY N X,KIM J,et al.Investigation on aesthetic and water permeability of surface protective material under accelerated weathering[J].Materials,2021,14(22):6896.
[32]JIANG L,ZHENG H B,XIONG J B,et al.Fabrication of negative carbon superhydrophobic self-cleaning concrete coating:High added-value utilization of recycled powders[J].Cement and Concrete Composites,2023,136:104882.
[33]ZHANG W J,LI S C,HOU D S,et al.Study on unsaturated transport of cement-based silane sol coating materials[J].Coatings,2019,9(7):427.
[34]ZHOU C L,PAN M F,LI S J,et al.Metal organic frameworks(MOFs)as multifunctional nanoplatform for anticorrosion surfaces and coatings[J].Advances in Colloid and Interface Science,2022,305:102707.
[35]JTJ 275—2000,海港工程混凝土结构防腐蚀技术规范[S].
JTJ 275—2000,Corrosion prevention technical specifications for concrete structures of marine harbour engineering[S].
[36]GB/T 50082—2009,普通混凝土长期性能和耐久性能试验方法标准[S].
GB/T 50082—2009,Standard for test methods of long-term performance and durability of ordinary concrete[S].
[37]JG/T 335—2011,混凝土结构防护用成膜型涂料[S].
JG/T 335—2011,Film-forming coatings for concrete structure protection[S].
[38]JTS 153—2015,水运工程结构耐久性设计标准[S].
JTS 153—2015,Standard for durability design of port and waterway engineering structure[S].
[39]JTG/T 3310—2019,公路工程混凝土结构耐久性设计规范[S].
JTG/T 3310—2019,Code for durability design of concrete structures in highway engineering[S].
[40]JT/T 991—2015,桥梁混凝土表面防护用硅烷膏体材料[S].
JT/T 991—2015,Creamy silane impregnating agent for concrete surface protection of bridge[S].
[41]宋莉芳,陈彤丹,文一平,等.混凝土用水性氟碳涂料的制备及耐腐蚀性能评价[J].化学研究与应用,2019,31(6):1209-1215.
SONG Li-fang,CHEN Tong-dan,WEN Yi-ping,et al.Preparation and properties of waterborne fluorinated polyacrylate coating for concrete anti-corrosion[J].Chemical Research and Application,2019,31(6):1209-1215.
[42]GB/T 5210—2006,色漆和清漆拉开法附着力试验[S].
GB/T 5210—2006,Paints and varnishes-pull-off test for adhesion[S].
[43]郝贠洪,宣姣羽,李 洁,等.紫外老化作用下钢结构涂层受风沙冲蚀性能研究[J].工程科学与技术,2022,54(4):141-146.
HAO Yun-hong,XUAN Jiao-yu,LI Jie,et al.Study on sand erosion performance of steel structure coatings under UV aging[J].Advanced Engineering Sciences,2022,54(4):141-146.
[44]GB/T 1865—2009,色漆和清漆 人工气候老化和人工辐射曝露 滤过的氙弧辐射[S].
GB/T 1865—2009,Paints and varnishes-Artificial weathering and exposure to artificial radiation-Exposure to filtered xenon-arc radiation[S].
[45]GB/T 1732—2020,漆膜耐冲击测定法[S].
GB/T 1732—2020,Determination of impact resistance of coating films[S].
[46]JC/T 2217—2014,环氧树脂防水涂料[S].
JC/T 2217—2014,Epoxy resin waterproof coating[S].
[47]JC/T 1018—2020,水性渗透型无机防水剂[S].
JC/T 1018—2020,Waterbased capillary inorganic waterproofer[S].
[48]GB 18445—2012,水泥基渗透结晶型防水材料[S].
GB 18445—2012,Cementitious capillary crystalline waterproofing materials[S].
[49]孙红尧,徐雪峰,杜 恒.中国水工结构抗冲磨防空蚀涂料的研究及应用现状[J].水利水运工程学报,2023(5):158-168.
SUN Hong-yao,XU Xue-feng,DU Heng.Investigation and application of abrasion and cavitation resistant coatings for hydraulic structures in China[J].Hydro-Science and Engineering,2023(5):158-168.
[50]GB/T 20624.2—2006,色漆和清漆 快速变形(耐冲击性)试验 第2部分:落锤试验(小面积冲头)[S].
GB/T 20624.2—2006,Paints and varnishes-Rapid-deformation(impact resistance)tests-Part 2:Falling-weight test(small-area indenter)[S].
[51]DL/T 5150—2017,水工混凝土试验规程[S].
DL/T 5150—2017,Test code for hydraulic concrete[S].
[52]DL/T 5207—2021,水工建筑物抗冲磨防空蚀混凝土技术规范[S].
DL/T 5207—2021,Technical specification for abrasion and cavitation erosion resistance of concrete in hydraulic structures[S].
[53]GB/T 1768—2006,色漆和清漆耐磨性的测定:旋转橡胶砂轮法[S].
GB/T 1768—2006,Method of test for abrasion resistance of paint films[S].
[54]GB/T 23988—2009,涂料耐磨性测定:落砂法[S].
GB/T 23988—2009,Determination for abrasion resistance of coatings by falling abrasive[S].
[55]GB/T 1689—2014,硫化橡胶:耐磨性能的测定[S].
GB/T 1689—2014,Rubber vulcanized—Determination of abrasion resistance(Akron machine)[S].
[56]KAUR R,KAUR R,RANI S,et al.Rapid monitoring of organochlorine pesticide residues in various fruit juices and water samples using fabric phase sorptive extraction and gas chromatography-mass spectrometry[J].Molecules,2019,24(6):1013.
[57]MILLÁN R G P,BYLINSKI H,NIEDOSTATKIEWICZ M.Effectiveness of various types of coating materials applied in reinforced concrete exposed to freeze-thaw cycles and chlorides[J].Scientific Reports,2023,13:12977.
[58]常绍艳,晁 兵.硅烷浸渍与湿面涂装工艺技术在嘉绍大桥上的设计应用[J].现代涂料与涂装,2012,15(12):30-32.
CHANG Shao-yan,CHAO Bing.Design application of silane impregnation & wet surface technology on Jiashao Bridge[J].Modern Paint & Finishing,2012,15(12):30-32.
[59]孟凡超,吴伟胜,刘明虎.港珠澳大桥桥梁耐久性设计创新[J].预应力技术,2010,32(6):11-27.
MENG Fan-chao,WU Wei-sheng,LIU Ming-hu.Durability design innovation of Hong Kong-Zhuhai-Macao Bridge[J].Prestress Technology,2010,32(6):11-27.
[60]张 杰.长平高速公路松下跨海特大桥设计[J].福建交通科技,2021(10):59-62.
ZHANG Jie.Design of Panasonic Cross-sea Bridge on Changping Expressway[J].Fujian Jiaotong Keji,2021(10):59-62.
[61]殷鹏程.福厦高铁湄洲湾跨海大桥(96+180+96)m斜拉桥总体设计[J].铁道标准设计,2020,64(增1):12-18.
YIN Peng-cheng.Overall design of(96+180+96)m cable-stayed bridge of Meizhou Bay Cross-sea Bridge of Fuzhou-Xiamen High-speed Railway[J].Railway Standard Design,2020,64(S1):12-18.
[62]王登辉.泉州安海湾特大桥主桥耐久性质量控制措施[J].福建交通科技,2020(1):82-86,99.
WANG Deng-hui.Quality control measures for durability of main bridge of Anhaiwan Bridge in Quanzhou[J].Fujia Jiaotong Keji,2020(1):82-86,99.
[63]文望青,严 翯,曾甲华.福厦高铁泉州湾跨海大桥桥塔设计[J].世界桥梁,2020,48(增1):7-11.
WEN Wang-qing,YAN He,ZENG Jia-hua.Tower design of Quanzhou Bay Cross-sea Bridge on Fuzhou-Xiamen High-speed Railway[J].World Bridges,2020,48(S1):7-11.
[64]杜 磊,梁立农,孙向东,等.黄茅海跨海通道工程高栏港大桥桥塔方案设计[J].广东公路交通,2021,47(3):30-35.
DU Lei,LIANG Li-nong,SUN Xiang-dong,et al.Scheme design of towers of Gaolangang Bridge in Huangmaohai link[J].Guangdong Highway Communications,2021,47(3):30-35.
[65]别业山,肖海珠,舒思利.杭州湾跨海铁路大桥总体设计[J].桥梁建设,2023,53(增2):22-28.
BIE Ye-shan,XIAO Hai-zhu,SHU Si-li.Overall design of Hangzhou Bay Cross-sea Railway Bridge[J].Bridge Construction,2023,53(S2):22-28.
[66]NOVÁK L,FOJTL L,KADLECKOVÁ M,et al.Surface modification of metallic inserts for enhancing adhesion at the metal-polymer interface[J].Polymers,2021,13(22):4015.
[67]GUO Y C,SHEN A Q,SUN X H.Exploring polymer-modified concrete and cementitious coating with high-durability for roadside structures in Xinjiang,China[J].Advances in Materials Science and Engineering,2017,2017:9425361.
[68]MERACHTSAKI D,FYTIANOS G,PAPASTERGIADIS E,et al.Properties and performance of novel Mg(OH)2—Based coatings for corrosion mitigation in concrete sewer pipes[J].Materials,2020,13(22):5291.

Memo

Memo:
-
Last Update: 2024-12-30