|Table of Contents|

Triaxial shear test of road surface/base layer waste materials with optimization of its model prediction(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2024年6期
Page:
11-22
Research Field:
道路工程
Publishing date:

Info

Title:
Triaxial shear test of road surface/base layer waste materials with optimization of its model prediction
Author(s):
ZHANG Bing-bing12 SONG Fei12 LI Wei-guang12 JIN Sheng-bin3 LIU Na4
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. The Key Laboratory of Intelligent Construction and Maintenance of CAAC, Xi'an 710064, Shaanxi, China; 3. Ciz-huake Transportation Construction Technology Co. Ltd., Beijing 100179, China; 4. Shandong College of Highway Technician, Jinan 253020, Shandong, China)
Keywords:
road engineering road surface/base layer rejected material triaxial test shear strength Duncan-Chang model P-Z dilatancy equation model forecast
PACS:
U411
DOI:
10.19721/j.cnki.1671-8879.2024.06.002
Abstract:
In order to investigate the engineering characteristics of aged and abandoned surface asphalt milling planning material and face-base mixed milling material in road engineering and the corresponding prediction optimization constitutive model, and to promote its reapplication in engineering, with the help of a large triaxial shear test system, respectively, the peripheral pressure for the 100, 200, 300, 400 kPa, the change rule of the strength and deformation of the test material were tested. The deviatoric stress-axial strain characteristics and volumetric strain-axial strain characteristics of the three test materials were also analyzed, on the basis of which the shear working mechanism of the materials was discussed. By combining the mechanical engineering properties of each test material, an E-B model using the Duncan-Chang model for the surface asphalt milling material and a predictive optimization model using the Duncan-Chang model along with the P-Z shear equation for the crushed stone material and the face-base mixed milling material were established to validated the test results. The results show that all three test material properties changed from brittle to ductile with increasing circumferential pressure, and the crushed stone and face-base mixed milling material specimens displayed strain softening characteristics, while the surface asphalt milling material specimens displayed strain hardening characteristics. The face-base mixed milling material has the potential to replace crushed stone material in the project because the strength values of the two materials are closer(about 5%), whereas the strength differences between the surface asphalt milling material and crushed stone material under various perimeter pressures range from 15% to 21%. Before 2% axial strain, all three test materials show shear shrinkage characteristics, after 2% axial strain, the surface asphalt milling planes still show obvious shear shrinkage characteristics, while the gravel material and the face-base mixed milling planes show shear expansion characteristics, and have the phenomenon of the later shear expansion section decreases. The calculation results of the predictive optimization models can all be in good agreement with the test results, especially the established Duncan-Chang model combined with the predictive model of the P-Z shear expansion equation, which can more accurately reflect the intrinsic relationship between the crushed stone material and the face-base mixed milling material. The research results can provide certain theoretical reference and reference for realizing the reapplication of aging waste materials in road engineering.3 tabs, 8 figs, 43 refs.

References:

[1] 田 源,牛冬瑜.铣刨料掺量及掺配方式对再生水稳碎石路用性能的影响[J].长安大学学报(自然科学版),2020,40(4):39-49.
TIAN Yuan,NIU Dong-yu.Effect of milling material content and blending method on road performance of regeneration cement stabilized gravel[J].Journal of Chang'an University(Natural Science Edition),2020,40(4):39-49.
[2]曹文贵,黄文健,王江营,等.土石混填体变形力学特性大型三轴试验研究[J].湖南大学学报(自然科学版),2016,43(3):142-148.
CAO Wen-gui,HUANG Wen-jian,WANG Jiang-ying,et al.Large-scale triaxial test study on deformation and intensity characteristics of soil-rock aggregate mixture[J].Journal of Hunan University(Natural Sciences),2016,43(3):142-148.
[3]李秀君,胡 畔,李有为,等.泡沫沥青冷再生混合料铣刨料级配的研究[J].水资源与水工程学报,2015,26(2):200-203.
LI Xiu-jun,HU Pan,LI You-wei,et al.Study on recycled material gradation of cold regeneration mixture with foamed bitumen[J].Journal of Water Resources and Water Engineering,2015,26(2):200-203.
[4]KLAUER K,EIFLER M,KIRSCH B,et al.Correlation between different cutting conditions,surface roughness and dimensional accuracy when ball end micro milling material measures with freeform surfaces[J].Machining Science and Technology,2020,24(3):446-464.
[5]MASI A,BELLUSCI M,CARLINI M,et al.Protective coating from manganese cobalt oxide powders obtained by high energy ball milling:Materials characterization and cell environment testing[J].ECS Transactions,2015,68(1):2671.
[6]陆逸帝,李秀君,邵 晗.集料粒径对旧水泥板与水稳基层铣刨料再生性能的影响[J].水资源与水工程学报,2015,26(2):209-211.
LU Yi-di,LI Xiu-jun,SHAO Han.Impact of aggregate particle size on material regeneration performance of old cement concrete slab and cement stabilized base material[J].Journal of Water Resources and Water Engineering,2015,26(2):209-211.
[7]赵全满,刘建树,卢晓锦,等.再生水稳铣刨料应用于台背回填段的性能评价[J].昆明理工大学学报(自然科学版),2022,47(3):148-158.
ZHAO Quan-man,LIU Jian-shu,LU Xiao-jin,et al.Performance evaluation of recycled cement stabilized milling material applied to abutment backfill section[J].Journal of Kunming University of Science and Technology(Natural Science),2022,47(3):148-158.
[8]赵全满,刘建树,李 皓,等.台背回填段再生水稳铣刨料沉降特性及力学响应[J].山东科技大学学报(自然科学版),2022,41(5):102-109.
ZHAO Quan-man,LIU Jian-shu,LI Hao,et al.Settlement characteristics and mechanical response of reclaimed cement stabilized milling materials in abutment backfill section[J].Journal of Shandong University of Science and Technology(Natural Science),2022,41(5):102-109.
[9]YU L T,XIE J,LI R,et al.Study on the performance of emulsified asphalt recycled subgrade based on the evaluation of semi-rigid milling material[J].Construction and Building Materials,2022,324:126614.
[10]赖学广.川西盆地地区热再生沥青混合料路用性能分析[D].成都:西南交通大学,2020.
LAI Xue-guang.Performance analysis of hot recycled asphalt mixture in West Sichuan Basin[D].Chengdu:Southwest Jiaotong University,2020.
[11]张思峰,马帅帅,马冠兴,等.水泥处治旧沥青路面结构铣刨料填筑路床的试验研究[J].路基工程,2016(2):110-113.
ZHANG Si-feng,MA Shuai-shuai,MA Guan-xing,et al.Experimental research on cement treated old asphalt pavement structure milling materials filling roadbed[J].Subgrade Engineering,2016(2):110-113.
[12]林 通,邝宏柱,胡力群,等.水泥稳定沥青路面铣刨料力学性能分析[J].交通运输工程学报,2014,14(2):7-13.
LIN Tong,KUANG Hong-zhu,HU Li-qun,et al.Analysis of mechanical properties for cement stabilized asphalt pavement milling mixture[J].Journal of Traffic and Transportation Engineering,2014,14(2):7-13.
[13]REN J L,WANG S Y,ZANG G Y.Effects of recycled aggregate composition on the mechanical characteristics and material design of cement stabilized cold recycling mixtures using road milling materials[J].Construction and Building Materials,2020,244:118329.
[14]ICTEN O,HOSMANE N S,ALI KOSE D,et al.Production of magnetic nano-bioconjugates via ball milling of commercial boron powder with biomolecules[J].Zeitschrift Für Anorganische Und Allgemeine Chemie,2016,642(14):828-832.
[15]王 淼.沥青铣刨料为集料的Eco-HDCC优化设计及关键性能[D].南京:东南大学,2021.
WANG Miao.Optimized design and key performance of Eco-HDCC with reclaimed asphalt pavement as aggregate[D].Nanjing:Southeast University,2021.
[16]黄 优,刘朝晖,李 盛,等.粒料的正交异性非线性回弹特性研究[J].中国公路学报,2020,33(11):148-157.
HUANG You,LIU Zhao-hui,LI Sheng,et al.Research on cross-anisotropic nonlinear resilient characteristics of granular material[J].China Journal of Highway and Transport,2020,33(11):148-157.
[17]黄 优.柔性基层沥青路面粒料层与土基结构模量研究[D].长沙:长沙理工大学,2019.
HUANG You.The research on structural modulus of unbound granular layer and subgrade in flexible asphalt pavement[D].Changsha:Changsha University of Science & Technology,2019.
[18]黄 优,王 帅,刘朝晖,等.粒料层当量模量求解新方法:以粒料基层沥青路面为例[J].中国公路学报,2023,36(2):97-106.
HUANG You,WANG Shuai,LIU Zhao-hui,et al.Method for determining equivalent modulus of granular layer-A case study of asphalt pavement with granular base[J].China Journal of Highway and Transport,2023,36(2):97-106.
[19]柳 力,朱晓明,刘朝晖,等.钢渣掺量对橡胶沥青混合料ARAC-13性能的影响[J].材料导报,2023,37(10):66-72.
LIU Li,ZHU Xiao-ming,LIU Zhao-hui,et al.Effect of steel slag content on performance of rubber mixture ARAC-13[J].Materials Reports,2023,37(10):66-72.
[20]刘朝晖,刘靖宇,黄 优,等.刚柔复合式路面结构室内压剪强度试验研究[J].东南大学学报(自然科学版),2019,49(6):1130-1135.
LIU Zhao-hui,LIU Jing-yu,HUANG You,et al.Experimental study on compressive-shear strength of rigid-flexible composite pavement structure[J].Journal of Southeast University(Natural Science Edition),2019,49(6):1130-1135.
[21]詹 磊,黄果敬,李光灿,等.水稳碎石铣刨料冷再生混合料力学性能分析[J].科学技术与工程,2021,21(30):13109-13115.
ZHAN Lei,HUANG Guo-jing,LI Guang-can,et al.Analysis of mechanical properties of cold recycled mixture of cement stabilized macadam milling material[J].Science Technology and Engineering,2021,21(30):13109-13115.
[22]LI Z G,HAO P W,LIU H Y,et al.Effect of cement on the strength and microcosmic characteristics of cold recycled mixtures using foamed asphalt[J].Journal of Cleaner Production,2019,230:956-965.
[23]CADAR R D,BOITOR R M,DRAGOMIR M L.An analysis of reclaimed asphalt pavement from a single source-case study:A secondary road in Romania[J].Sustainability,2022,14(12):7057.
[24]殷德顺,王保田,王云涛.不同应力路径下的邓肯-张模型模量公式[J].岩土工程学报,2007,29(9):1380-1385.
YIN De-shun,WANG Bao-tian,WANG Yun-tao.Tangent elastic modulus of Duncan-Chang model for different stress paths[J].Chinese Journal of Geotechnical Engineering,2007,29(9):1380-1385.
[25]吴 明,夏唐代,俞 峰.基于Duncan-Chang本构的非线性土压力模型[J].煤田地质与勘探,2008,36(2):36-39.
WU Ming,XIA Tang-dai,YU Feng.Non-linear earth pressure model based on Duncan-Chang constitutive model[J].Coal Geology & Exploration,2008,36(2):36-39.
[26]姚仰平,侯 伟,罗 汀.土的统一硬化模型[J].岩石力学与工程学报,2009,28(10):2135-2151.
YAO Yang-ping,HOU Wei,LUO Ting.Unified hardening model for soils[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(10):2135-2151.
[27]NOVA R,WOOD D M.A constitutive model for sand in triaxial compression[J].International Journal for Numerical and Analytical Methods in Geomechanics,1979,(3):255-278.
[28]申存科.粗粒土的颗粒破碎特性与本构关系研究[D].大连:大连理工大学,2009.
SHEN Cun-ke.Study on particle breakage behavior and constitutive model of coarse granular aggregates[D].Dalian:Dalian University of Technology,2009.
[29]MANZARI M T,DAFALIAS Y F.A critical state two-surface plasticity model for sands[J].Géotechnique,1997,47(2):255-272.
[30]GAJO A,WOOD M,SEVERN-TRENT S.A kinematic-hardening constitutive model:The q-p formulation[J].Géotechnique,1999,49(5):595-614.
[31]LI X S,DAFALIAS Y F.Dilatancy for cohesionless soils[J].Géotechnique,2000,50(4):449-460.
[32]SONG F,JIN Y T,LIU H B,et al.Analyzing the deformation and failure of geosynthetic-encased granular soil in the triaxial stress condition[J].Geotextiles and Geomembranes,2020,48(6):886-896.
[33]SONG F,LIU H,YANG B,et al.Large-scale triaxial compression tests of geocell-reinforced sand[J].Geosynthetics International,2019,26(4):388-395.
[34]赵利军,蒋文志,侯劲汝,等.搅拌方式对水泥稳定碎石混合料抗压强度的影响[J].中国公路学报,2018,31(1):151-158.
ZHAO Li-jun,JIANG Wen-zhi,HOU Jin-ru,et al.Influence of mixing methods on performance of compressive strength for cement stabilized macadam mixture[J].China Journal of Highway and Transport,2018,31(1):151-158.
[35]陶庆东,何兆益,贾 颖.基于大三轴试验的土石混合体强度特性与影响因素[J].科学技术与工程,2019,19(26):310-318.
TAO Qing-dong,HE Zhao-yi,JIA Ying.Strength characteristics and influencing factors of soil-rock mixture based on large triaxial test[J].Science Technology and Engineering,2019,19(26):310-318.
[36]迟明杰,赵成刚,李小军.砂土剪胀机理的研究[J].土木工程学报,2009,42(3):99-104.
CHI Ming-jie,ZHAO Cheng-gang,LI Xiao-jun.Stress-dilation mechanism of sands[J].China Civil Engineering Journal,2009,42(3):99-104.
[37]WOOD D M.Soil behaviour and critical state soil mechanics[M].Cambridge:Cambridge University Press,1991.
[38]李广信.应力路线对土的应力应变关系的影响[D].北京:清华大学,1980.
LI Guang-xin.Effect of stress route on stress-strain relationship of soil[D].Beijing:Tsinghua University,1980.
[39]贾宇峰,王丙申,迟世春.堆石料剪切过程中的颗粒破碎研究[J].岩土工程学报,2015,37(9):1692-1697.
JIA Yu-feng,WANG Bing-shen,CHI Shi-chun.Particle breakage of rockfill during triaxial tests[J].Chinese Journal of Geotechnical Engineering,2015,37(9):1692-1697.
[40]DUNCAN J M,BYRNE P M,WONG K S,et al.Strength,stress-strain and bulk modulus parameters for finite element analysis of stress and movement in soil masses[R].Berkerley:University of Califomia,1980.
[41]罗明星,张季如,刘晓璇.考虑应力路径和颗粒破碎影响的钙质砂剪胀特性及剪胀方程研究[J].岩土工程学报,2021,43(8):1453-1462.
LUO Ming-xing,ZHANG Ji-ru,LIU Xiao-xuan.Dilatancy behaviors and equation of calcareous sand considering stress path and particle breakage[J].Chinese Journal of Geotechnical Engineering,2021,43(8):1453-1462.
[42]郭建强,刘新荣,黄武锋,等.基于弹性应变能的Mohr-Coulomb强度准则讨论[J].同济大学学报(自然科学版),2018,46(9):1168-1174.
GUO Jian-qiang,LIU Xin-rong,HUANG Wu-feng,et al.Mohr-Coulomb strength criterion based on elastic strain energy[J].Journal of Tongji University(Natural Science),2018,46(9):1168-1174.
[43]SINGH M,SINGH B.Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of jointed rocks[J].International Journal of Rock Mechanics and Mining Sciences,2012,51:43-52.

Memo

Memo:
-
Last Update: 2024-12-30