|Table of Contents|

Water migration characteristics of highway subgrade in seasonal frozen areas considering fine particle content(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2024年4期
Page:
27-37
Research Field:
道路工程
Publishing date:

Info

Title:
Water migration characteristics of highway subgrade in seasonal frozen areas considering fine particle content
Author(s):
LIU Hong-ping1 LI Hao2 WEI Jin3 BIAN Hai-ding3
(1. Engineering Design and Research Academy, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Chongqing Communications Constructiong(Group)Co. Ltd, Chongqing 401120, China; 3. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China)
Keywords:
road engineering subgrade soil laboratory test water migration characteristics fine particle content migration potential
PACS:
U416.1
DOI:
10.19721/j.cnki.1671-8879.2024.04.003
Abstract:
The phenomenon of frost heaving and frost boiling on highways in seasonal frozen areas is severe, and diseases such as frost heaving and frost boiling are mainly caused by the migration of water in the subgrade soil. In order to explore the relationship between water migration characteristics and fine particle content(mass fractions, the same below)in subgrade soil in seasonal frozen areas, based on the reconstruction and expansion project of the Gongjue to Mangkang Highway in Xizang, water migration tests for non-frozen and frozen subgrade soil were designed, the influence of fine particle content on the characteristics of capillary water rise height, temperature gradient, and inflow flux were studied, and a modified model for migration potential and fine particle content was established. The results show that when keeping initial water content and dry density constant, with the increase of fine particle content, the capillary water rise height and inflow flux both increase linearly, and the temperature gradient increases in a curve. As fine particle content decreases, the total inflow of frozen soil changes from an arch shape to a slight S-shape with time, and the inflow flux changes from a decreasing shape to a peak shape with time. Considering the influence of matrix potential on inflow flux, a modified model for water migration potential and fine particle content of subgrade soil in seasonally frozen areas is established. It is found that the migration potential first increases and then decreases with the increase of fine particle content. Comparing with the migration potential model without considering matrix potential, the calculated values and peak point of the migration potential modified model are smaller, resulting in relatively safe. The minimum filling height of embankments with a fine particle content of less than 22% should be controlled above 1.5 m.2 tabs, 16 figs, 27 refs.

References:

[1] 周幼吾,郭东信,邱国庆,等.中国冻土[M].北京:科学出版社,2000.
ZHOU You-wu,GUO Dong-xin,QIU Guo-qing,et al.Geocryology in China[M].Beijing:Science Press,2000.
[2]徐斅祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2010.
XU Xiao-zu,WANG Jia-cheng,ZHANG Li-xin.Frozen soil physics[M].Beijing:Science Press,2010.
[3]陈肖柏,刘建坤,刘鸿绪,等.土的冻结作用与地基[M].北京:科学出版社,2006.
CHEN Xiao-bo,LIU Jian-kun,LIU Hong-xu,et al.Frost action of soil and foundation engineering[M].Beijing:Science Press,2006.
[4]JI Y K,ZHOU G Q,ZHOU Y,et al.Frost heave in freezing soils:A quasi-static model for ice lens growth[J].Cold Regions Science and Technology,2019,158:10-17.
[5]徐斅祖,邓友生.冻土中水分迁移的实验研究[M].北京:科学出版社,1991.
XU Xiao-zu,DENG You-sheng.Experimental study on water migration in frozen soil[M].Beijing:Science Press,1991.
[6]LI A Y,NIU F J,XIA C C,et al.Water migration and deformation during freeze-thaw of crushed rock layer in Chinese high-speed railway subgrade:Large scale experiments[J].Cold Regions Science and Technology,2019,166:102841.
[7]ZHANG L H,MA W,YANG C S,et al.Investigation of the pore water pressures of coarse-grained sandy soil during open-system step-freezing and thawing tests[J].Engineering Geology,2014,181:233-248.
[8]CHEN H G,ZHU Z D,WANG Z.Constitutive model with double yield surfaces of freeze-thaw soil considering moisture migration[J].Bulletin of Engineering Geology and the Environment,2020,79(5):2353-2365.
[9]叶万军,陈义乾,张登峰,等.冻融作用下水分迁移对压实黄土强度影响的宏微观试验研究[J].中国公路学报,2021,34(6):27-37.
YE Wan-jun,CHEN Yi-qian,ZHANG Deng-feng,et al.Macro and micro experimental study on the influence of moisture migration on the strength of compacted loess under freeze-thaw cycling[J].China Journal of Highway and Transport,2021,34(6):27-37.
[10]芮大虎,郭 成,芦 明,等.冻结作用下黏土中水、盐迁移试验研究[J].冰川冻土,2019,41(1):109-116.
RUI Da-hu,GUO Cheng,LU Ming,et al.Experimental study on water and salt migrations in clay under freezing effect[J].Journal of Glaciology and Geocryology,2019,41(1):109-116.
[11]肖泽岸,赖远明.冻融和干湿循环下盐渍土水盐迁移规律研究[J].岩石力学与工程学报,2018,37(增1):3738-3746.
XIAO Ze-an,LAI Yuan-ming.Study on water and salt transfer mechanism in saline soil under freezing-thawing and dry-wet conditions[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(S1):3738-3746.
[12]雷华阳,张文振,冯双喜,等.水汽补给下砂土水分迁移规律及冻胀特性研究[J].岩土力学,2022,43(1):1-14.
LEI Hua-yang,ZHANG Wen-zhen,FENG Shuang-xi,et al.On water migration and frost heaving characteristics of sand under water vapor recharge[J].Rock and Soil Mechanics,2022,43(1):1-14.
[13]LIU L Q,MAO X S,WU Q,et al.Mechanism of groundwater migration in the subgrade in a seasonally frozen soil area[J].Journal of Cold Regions Engineering,2019,33(4):06019001.
[14]WANG T L,ZHANG Y Z,MA W,et al.Investigation of liquid and vapor migration in coarse-grained soil during open-system step-freezing test[J].Cold Regions Science and Technology,2019,165:102816.
[15]WANG Z,XIE K H,ZHANG Y N,et al.A multiphase model developed for mesoscopic heat and mass transfer in thawing frozen soil based on lattice Boltzmann method[J].Applied Thermal Engineering,2023,229:120580.
[16]刘建坤,于钱米,刘景宇,等.细粒土不均匀分布对粗粒土力学特性的影响[J].岩土工程学报,2017,39(3):562-572.
LIU Jian-kun,YU Qian-mi,LIU Jing-yu,et al.Influence of non-uniform distribution of fine soil on mechanical properties of coarse-grained soil[J].Chinese Journal of Geotechnical Engineering,2017,39(3):562-572.
[17]KONRAD J M.Freezing-induced water migration in compacted base-course materials[J].Canadian Geotechnical Journal,2008,45(7):895-909.
[18]王旭超,张莎莎,赵凯旋.细粒土含量对粗粒硫酸盐渍土路基填料盐胀特性的影响试验及分析模型[J].岩土力学,2022,43(8):2191-2202.
WANG Xu-chao,ZHANG Sha-sha,ZHAO Kai-xuan.Salt expansion characteristics and analysis model of coarse-grained sulfate saline soil embankment fill material with increasing fines content[J].Rock and Soil Mechanics,2022,43(8):2191-2202.
[19]郭志杰.细粒含量对粗-细粒混合土物理力学特性的影响[D].北京:北京交通大学,2018.
GUO Zhi-jie.Effect of fine soil content on physical and mechanical properties of mixed coarse-and fine-grained soil[D].Beijing:Beijing Jiaotong University,2018.
[20]于钱米,邰博文,牛吉强,等.细粒土空间不均匀分布对水分迁移的影响[J].中南大学学报(自然科学版),2020,51(12):3503-3514.
YU Qian-mi,TAI Bo-wen,NIU Ji-qiang,et al.Effect of unevenly distributed fine-grained soil in space on moisture migration[J].Journal of Central South University(Science and Technology),2020,51(12):3503-3514.
[21]杜晓燕,叶阳升,张千里,等.高速铁路路基微冻胀填料冻胀发育机制研究[J].铁道标准设计,2019,63(6):30-33.
DU Xiao-yan,YE Yang-sheng,ZHANG Qian-li,et al.Study on development mechanism of high speed railway subgrade of frost heave micro filler[J].Railway Standard Design,2019,63(6):30-33.
[22]张玉芝,刘文龙,王海永,等.冻融循环作用下含水率对粗颗粒填料水分迁移影响的宏细观试验研究[J].冰川冻土,2022,44(2):591-601.
ZHANG Yu-zhi,LIU Wen-long,WANG Hai-yong,et al.Macro-micro experimental investigation of the initial water content influence on water migration of coarse-grained soil subjected to freezing and thawing[J].Journal of Glaciology and Geocryology,2022,44(2):591-601.
[23]张玉芝,王天亮,张 飞,等.不同细粒含量下高铁路基粗颗粒填料水气迁移特征与冻胀特性[J].中国铁道科学,2021,42(4):1-8.
ZHANG Yu-zhi,WANG Tian-liang,ZHANG Fei,et al.Water-vapor migration and frost heave characteristics of coarse particle filler with different fine contents in high speed railway subgrade[J].China Railway Science,2021,42(4):1-8.
[24]JTG 3430—2020,公路土工试验规程[S].
JTG 3430—2020,Test methods of soils for highway engineering[S].
[25]JTG D30—2015,公路路基设计规范[S].
JTG D30—2015,Specifications for design of highway subgrades[S].
[26]盛 煜,马 巍,侯仲杰.正冻土中水分迁移的迁移势模型[J].冰川冻土,1993,15(1):140-143.
SHENG Yu,MA Wei,HOU Zhong-jie.A model of migration potential for moisture migration during soil freezing[J].Journal of Glaciology and Geocryology,1993,15(1):140-143.
[27]KONRAD J M,MORGENSTERN N R.Effects of applied pressure on freezing soils[J].Canadian Geotechnical Journal,1982,19(4):494-505.

Memo

Memo:
-
Last Update: 2024-07-10