[1] 邓 露,褚鸿鹄,龙砺芝,等.基于深度学习的土木基础设施裂缝检测综述[J].中国公路学报,2023,36(2):1-21.
DENG Lu,CHU Hong-hu,LONG Li-zhi,et al.Review of deep learning-based crack detection for civil infrastructures[J].China Journal of Highway and Transport,2023,36(2):1-21.
[2]舒江鹏,李 俊,马亥波,等.基于特征金字塔网络的超大尺寸图像裂缝识别检测方法[J].土木与环境工程学报(中英文),2022,44(3):29-36.
SHU Jiang-peng,LI Jun,MA Hai-bo,et al.Crack detection method based on feature pyramid network for super large-scale images[J].Journal of Civil and Environmental Engineering,2022,44(3):29-36.
[3]孟庆成,李明健,万 达,等.基于M-Unet的混凝土裂缝实时分割算法[J].土木与环境工程学报(中英文),2024,46(1):215-222.
MENG Qing-cheng,LI Ming-jian,WAN Da,et al.Real-time segmentation algorithm of concrete cracks based on M-Unet[J].Journal of Civil and Environmental Engineering,2024,46(1):215-222.
[4]刘宇飞,樊健生,聂建国,等.结构表面裂缝数字图像法识别研究综述与前景展望[J].土木工程学报,2021,54(6):79-98.
LIU Yu-fei,FAN Jian-sheng,NIE Jian-guo,et al.Review and prospect of digital-image-based crack detection of structure surface[J].China Civil Engineering Journal,2021,54(6):79-98.
[5]KHERADMANDI N,MEHRANFAR V.A critical review and comparative study on image segmentation-based techniques for pavement crack detection[J].Construction and Building Materials,2022,321:126162.
[6]杨才千,李 帅,王博昆,等.基于动态阈值的混凝土裂缝高抗噪提取及识别方法[J].东南大学学报(自然科学版),2021,51(6):967-972.
YANG Cai-qian,LI Shuai,WANG Bo-kun,et al.High anti-noise extraction and identification method for concrete cracks based on dynamic threshold[J].Journal of Southeast University(Natural Science Edition),2021,51(6):967-972.
[7]朱 鑫,漆泰岳,王 睿,等.一种改进的用于裂缝图像分割的Otsu方法[J].地下空间与工程学报,2017,13(增1):80-84.
ZHU Xin,QI Tai-yue,WANG Rui,et al.An improved Otsu method for image segmentation of cracks[J].Chinese Journal of Underground Space and Engineering,2017,13(S1):80-84.
[8]NNOLIM U A.Automated crack segmentation via saturation channel thresholding,area classification and fusion of modified level set segmentation with Canny edge detection[J].Heliyon,2020,6(12):e05748.
[9]张振海,贾争满,季 坤.基于改进的Otsu法的地铁隧道裂缝识别方法研究[J].重庆交通大学学报(自然科学版),2022,41(1):84-90.
ZHANG Zhen-hai,JIA Zheng-man,JI Kun.Crack identification method of subway tunnel based on improved Otsu method[J].Journal of Chongqing Jiaotong University(Natural Science),2022,41(1):84-90.
[10]勾红叶,杨 彪,华 辉,等.桥梁信息化及智能桥梁2019年度研究进展[J].土木与环境工程学报(中英文),2020,42(5):14-27.
GOU Hong-ye,YANG Biao,HUA Hui,et al.State-of-the-art review of bridge informatization and intelligent bridge in 2019[J].Journal of Civil and Environmental Engineering,2020,42(5):14-27.
[11]吴子燕,贾大卫,王其昂.基于卷积神经网络与区域生长法的建筑裂缝识别[J].应用基础与工程科学学报,2022,30(2):317-327.
WU Zi-yan,JIA Da-wei,WANG Qi-ang.Building crack identification based on convolutional neural network and regional growth method[J].Journal of Basic Science and Engineering,2022,30(2):317-327.
[12]张伟光,钟靖涛,于建新,等.基于机器学习和图像处理的路面裂缝检测技术研究[J].中南大学学报(自然科学版),2021,52(7):2402-2415.
ZHANG Wei-guang,ZHONG Jing-tao,YU Jian-xin,et al.Research on pavement crack detection technology based on convolution neural network[J].Journal of Central South University(Science and Technology),2021,52(7):2402-2415.
[13]邹俊志,杨建喜,李 昊,等.复杂背景下基于改进YOLOv3算法的桥梁表观病害识别[J].铁道科学与工程学报,2021,18(12):3257-3266.
ZOU Jun-zhi,YANG Jian-xi,LI Hao,et al.Bridge apparent damage detection based on the improved YOLOv3 in complex background[J].Journal of Railway Science and Engineering,2021,18(12):3257-3266.
[14]蔡逢煌,张岳鑫,黄 捷.基于YOLOv3与注意力机制的桥梁表面裂痕检测算法[J].模式识别与人工智能,2020,33(10):926-933.
CAI Feng-huang,ZHANG Yue-xin,HUANG Jie.Bridge surface crack detection algorithm based on YOLOv3 and attention mechanism[J].Pattern Recognition and Artificial Intelligence,2020,33(10):926-933.
[15]崔晓宁,王起才,李 盛,等.基于YOLO-v5的双块式轨枕裂缝智能识别[J].铁道学报,2022,44(4):104-111.
CUI Xiao-ning,WANG Qi-cai,LI Sheng,et al.Intelligent recognition of cracks in double block sleeper based on YOLO-v5[J].Journal of the China Railway Society,2022,44(4):104-111.
[16]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//IEEE.Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).New York:IEEE,2015:3431-3440.
[17]LI S Y,ZHAO X F,ZHOU G Y.Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network[J].Computer-Aided Civil and Infrastructure Engineering,2019,34(7):616-634.
[18]REN Y P,HUANG J S,HONG Z Y,et al.Image-based concrete crack detection in tunnels using deep fully convolutional networks[J].Construction and Building Materials,2020,234:117367.
[19]LIU Z Q,CAO Y W,WANG Y Z,et al.Computer vision-based concrete crack detection using U-net fully convolutional networks[J].Automation in Construction,2019,104:129-139.
[20]阙 云,季 雪,蒋子平,等.GAN数据增强下路面裂缝语义分割算法[J].吉林大学学报(工学版),2023,53(11):3166-3175.
QUE Yun,JI Xue,JIANG Zi-ping,et al.Semantic segmentation algorithm of pavement cracks based on GAN data augmentation[J].Journal of Jilin University(Engineering and Technology Edition),2023,53(11):3166-3175.
[21]邓 露,香 超,王 维,等.基于改进编解码网络的钢箱梁疲劳裂纹分割[J].华中科技大学学报(自然科学版),2022,50(8):66-72.
DENG Lu,XIANG Chao,WANG Wei,et al.Fatigue crack segmentation of steel box girder based on improved encoderdecoder networks[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2022,50(8):66-72.
[22]XIANG C,WANG W,DENG L,et al.Crack detection algorithm for concrete structures based on super-resolution reconstruction and segmentation network[J].Automation in Construction,2022,140:104346.
[23]彭道刚,刘薇薇,戚尔江,等.基于CBAM-Res_UNet电厂高压蒸汽泄漏检测研究[J].电子测量与仪器学报,2021,35(12):206-214.
PENG Dao-gang,LIU Wei-wei,QI Er-jiang,et al.Research on leakage detection of high pressure steam inpower plant based on CBAM-Res_Unet[J].Journal of Electronic Measurement and Instrumentation,2021,35(12):206-214.
[24]赵 祥,王 涛,张 艳,等.基于改进DeepLabv3+孪生网络的遥感影像变化检测方法[J].地球信息科学学报,2022,24(8):1604-1616.
ZHAO Xiang,WANG Tao,ZHANG Yan,et al.Remote sensing image change detection based on improved DeepLabv3+ Siamese network[J].Journal of Geo-Information Science,2022,24(8):1604-1616.
[25]HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//IEEE.Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).New York:IEEE,2016:770-778.
[26]WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional block attention module[M]//ECCV.Computer Vision-ECCV 2018.Cham:Springer International Publishing,2018:3-19.
[27]JADON S.A survey of loss functions for semantic segmentation[C]//IEEE.Proceedings of 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology(CIBCB).New York:IEEE,2020:1-7.
[28]ZHANG L X,SHEN J K,ZHU B J.A research on an improved Unet-based concrete crack detection algorithm[J].Structural Health Monitoring,2021,20(4):1864-1879.